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The issue is to seek quantum interference effects in an arbitrary field, in particular 
in psychology. For this I invent a digest of quantum mechanics over finite-n-di- 
mensional Hflbert space. In order to match crude data, I use not only yon 
Neumann's mixed states but also a parallel notion of unsharp tests. The 
mathematically styled text (and earlier work on multibin tests, designated MB) 
deals largely with these new tests. Quantum psychology itself is only given a 
foundation. It readily engenders objections; hence I develop its plausibility 
gradually, in interlocking essays. There is also the empirically definite proposal 
that (state, test, outcome)-indexed counts be gathered to record data, then fed 
to a "matrix format" (MF) search for quantum models. A previously proposed 
experiment in visual perception, which has since failed to find significant 
quantum correlations, is discussed. The suspicion that quantum mechanics is all 
around us goes beyond MF, and "Schrodinger's cat" symbolizes this broader 
perspective. 

1. I N T R O D U C T I O N  

1.1. Quantum Logic in Everyday Life was m y  first t i t l e - - t oo  dull. 
The central  theme is applicat ion of  the mode  of compar ison  between 
theory and  experiment developed in the q u a n t u m  mechanics  of the 1920's 
to investigations apparent ly  remote  f rom a tomic  physics. The  quan tum 
mechanical  mode  of  compar i son  is defined in Section 8 on q u a n t u m  logics 
and  in Section 9 on  the matrix format  (MF).  Some readers will prefer to 
start there. I define the logic as all the empirical probabilities indexed by  
the ingredients of the observer 's  experience, his states and  tests, in con-  
tradist inction to c o m m o n  usage, in which the lattice of wha t  I call sharp 
questions is singled out  (but see von  Neumann ,  1962, p. 195). 

The  earlier sections sell q u a n t u m  logic in everyday life. It  is usually 
held that the crudely macroscopic  has noth ing  to do with the epistemologi- 
cal complexity of  qua n t um  physics, indeed that  a "classical wor ld"  (a 
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muddy notion) free of ontological complication must exist for experiments 
to be possible. Particularly those trained to easily follow the arguments 
have also acquired this metaphysical prejudice. I have therefore felt it best 
to do metaphysics (Sections 1-7) before the theorems. This is faithful to 
my thought, which has grown from somewhat of a metaphysical miasma. 
Section 7 includes a notion distasteful to me, quantum logic with no 
internal observer. 

In 1958 or 1959 I heard Niels Bohr lecture at Columbia about his 
suggestion that complementarity might illuminate psychology. I under- 
stood relativity of reality then. Yet I smirked, and did not recall Bohr's 
opinion until after the work of Section 6,3 and after the deformation of 
quantum economics into quantum psychology to be recounted. So I have 
myself shared physicists' incredulity, based mainly on the smallness of h. 
This is not to insist that the essays are written only to sway doubters: the 
multifaceted approach of a series of essays is more suited to a voyage in 
complementarity than a more self-consciously linear style. 

1.2. Sehrrdingefs Cat. The nontrivial structure of reality in quan- 
tum mechanics has a mascot. I first heard Schrrdinger's fable (1935; 
Jauch, 1973) told without a moral in a classroom of T. D. Lee's. Once 
upon a time an unfortunate cat was put into a box together with a 
radioactive atom, so rigged that the decay would kill the cat. If the original 
and decayed atomic wave functions are a and b, the live cat's wave 
function c, the dead cat's d, then after a half-life, the development of an 

I 

atomic state which if unlinked to the cat would have been 2 - 5 ( a +  b) 
1 

instead results in the atom-cat state 2-5(ac+bd). Two cat realities are 
contained in one wave function, and the impracticality of obtaining an 
interference effect from both terms may not prevent us in principle from 
considering such interference and therefore both realities together. (Per- 
haps d should not be quite dead if one is to speak of it as experiencing a 
reality! Einstein, 1949, will not kill a cat even in a thought experiment and 
puts a mark on a tape instead.) Plural reality fits a philosophy where the 
wave function or other formal structure of quantum mechanics is more 
primitive than reality, a scientific heresy discussed in Section 2. von 
Neumann unsuccessfully tried to squelch this plurality by warning his 
readers too pointedly against it (1955, pp. 413-421, especially observation 
by the "abstract ego" of a system which contains the observer's brain!). 
The emphasis on plurality is now commonly called the Everett 
(1957)-Wheeler (1957) or many-worlds viewpoint. My own similar under- 
standing of quantum mechanics (1979) relates to some points in the 
present paper. 



~ r ' s  Cat 521 

The dependence of our common experience of reality upon its genesis 
through Darwinian evolution within a structure not itself clearly real is a 
theme of Sections 3-6. Issues related to plural real i ty--whether  inter- 
ference is or is not in laboratory practice necessarily close to the world of 
few atoms, the relationship of relative reality to superselection rules and to 
complementarity, and a question concerning prior correlations in the 
theory of measurement- - form Section 6. 

1.3. The Program. MF requires the measurement of probabilities of 
different outcomes of each of several types of experiment, done by re- 
peated trials of each type. Each experiment is considered as being done in 
two stages, the preparation of a state and the execution of a test. Eventu- 
ally each state and each different outcome or "bin" of each test has an 
n x n Hermitian matrix associated to it, much as in conventional quantum 
mechanics. Limiting the broad scope defined in Section 8 to MF, Section 
9.1, is discussed in Section 9.2. Picking n small so as to laave few 
parameters! Section 9.3. What programs for fitting data by MF might be 
like: Section 14. We have written a program for n = 2 , 3 , 4  (Lubkin and 
Lubkin, 1979b). Interest might be attached by some to the factor-analytic 
quality of such programs: Section 14.5. 

1.4. From Economics to Psychology. When my wife studied econom- 
ics, I spoke to her (Quantize economics!) about exercising the ideas of 
physics there. In 1970 1 became troubled about two doubts. Quantum logic 
can be presented as a confrontation of a state by a test to yield a 
distribution of probabilities over outcomes (Section 8). Comparison be- 
tween the observer as tester and the observer as part of a state tested is 
perhaps not an automatic feature of quantum logic so presented, but I 
wish to regard quantum logic as having such a feature. For  observer A 
interacting with system B to be a new state system AB, presumably for 
testing by yet another observer, A and  B must be sufficiently similar that 
their interaction in entity.AB be describable. 

Thefirst 1970 doubt was this: In economics, A is an economist and B 
is a firm, country, or industry. For  A and B to interact, the economist had 
to be a kind of firm, or the firm an economist--ridiculous. Yet by saying 
to myself for two years that the economist is a firm, I got used to the idea. 
To speed things up, imagine economist A theorizing about his own 
business with system B. A is now economic enough to be a firm. 

Sad to say, this amusing symmetry between system and observer is not 
explicit in the main sequel, perhaps because I get tied down to adapting 
the limited state-test format to a pedestrian program of application. But 
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this program should lead to observers within states, if pursued. Then a 
quantum theory would make reality melt away. This brings us to my 
second 1970 doubt: It seems absurd that "interactions" of some crude 
economic model should melt physical reality. I reject this doubt because 
conventional physics is vigorous without absolute reality, hence absolute 
reality is discredited. Reality is open to rough treatment for the develop- 
ment of any phenomenology. 

Many copies. Empirical quantum logic requires the duplication of 
many copies of its states, so much so that a state is defined in terms of the 
procedure for making one. Perhaps it is because one easily finds another 
atom that quantum logic has flowered in the atomic physicist's garden. 

For  an experimental economist to secure many copies of a "state," it 
is awkward to work with large firms. And interference may be masked by 
largeness. Instead of burying fluctuations under large numbers, we seek to 
probe fluctuations. So it is best to make the firm small: a person, a rat, a 
microbe: some economic atom. Later, "many-body" theory may relate 
fluctuations of small systems to features of large systems, as in physics. 

The firm now is indeed like the economis t - - I  hold this descent at the 
level of a person. But the economist has become a psychologist. 

Quantum psychology, l It is easy to hope that experiments in quantum 
psychology may cement analogies between the vaguenesses of dreams and 
Freudian conceptions, and the complexity of realities in quantum theory. 
Introspective conjecture might most easily suggest experiments in human 
psychology, though rats or microbes would seem even more atomic. One 
might frame notions about thoughts of rats, to relate dream-analogy 
conjecture to animals: any crazy motivation is safe for finding an empirical 
domain to study, because MF would develop results mechanically from the 
probabilities measured by experiments, not from the motivating en- 
thusiasms. 

The intention is to abstract a simple quality as the entity described by 
quantum state and test matrices. It is like studying a spin or a few 
interacting spins, without worrying about virtual hyperons. But the phe- 
nomenology is to be psychological. The theoretical framework allows large 
interference effects. Should these appear, the concomitant relativity of 
reality in the new physics of thoughts would be a new departure from 
unified classical reality. This could act back upon general physics, where 
yet most thought remains saturated with classical reality borne by some 

iBecause there are people who indiscriminately connect quantum physics with the bizarre and 
who are independently enthusiastic about something they call quantum psychology, I feel 
obliged to make it known to the reader that I am not myself a devotee of either parapsychol- 
ogy, transcendental meditation, or religion. 
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space-t ime manifold (Lubkin, 1964). When it is not a question of framing 
formal structures, writers (e.g., Borges, 1967) have indeed sought to aban- 
don classical reality. 

1.5. Mixed Tests, Extraneous Tests. The state matrices P of MF are 
the familiar density matrices, but  the bin acceptance matrices of Section 10 
on tests (and MB), acceptors for short, were new to me. These generalize 
Dirac-observable tests in about the same way that density matrices gener- 
alize wave functions. The empirical program almost- - the  hedge is Section 
14.3--demands this generalization, because it is not possible to decide a 
priori which experimental procedures correspond to Dirac observables. 
The generalization brings in convex combination of tests, hence mixed 
tests and extreme tests, the conventional observables being extreme tests of 
the sort I call sharp. I call tests not mixtures of sharp tests extraneous. 

1.6. Notation. Positivity is strong. A positive matrix (Appendix A) is 
"positive definite," not a matrix of positive numbers. I is the unit matrix. 
X(M) is the eigenspace of matrix M belonging to eigenvalue X, i.e., 
(Mx=Lr)c~[xEh(M)]. Thus 0(M) is the kernel of M and I (M) is the 
image of M. diag(a, b . . . .  ) is a diagonal matrix. 

Dirac bracket ( x [ y )  is the Hermitian inner product of state vectors x 
and y, with (kxly)=~*(xly) and (xl~y)=~(xly) for ~ a complex 
number; (x[My) is also written (x[Mly). The map (A,B)-~TrAtB =A.B 
from a pair of n X n matrices to complex numbers defines a positive 
definite dot product usually restricted to the n2-real-dimensional vector 
space of Hermitian matrices, and written with a dot. Dot product of the 
traceless parts a, b of A, B considered as vectors in an (n 2 -  1)-dimensional 
space, is written (a, b). 

When the n •  n Hermitian matrices are considered a topological 
space, the norm topology in the n2-dimensional vector space is meant: the 
set of matrices M + X is an open sphere about M of radius e, if X ranges 
over X.X<e 2, and these open spheres constitute a topological basis. 
Topologies of lists are direct-product topologies of those of the arguments; 
topologies of subsets are induced by restriction. 

"Metaphysics" parallels "metamathematics." "Mysticism" denotes be- 
lief in absolute reality or, in Section 2, preoccupation with an underlying 
wave-function-like structure. 

1.7. Related Work. References I learned about after writing the 
main text deserve early mention. 

Greidanus (1971) is close in mood to the present work, though his 
stress on information theory is absent here, and the black-box quantum 
empiricism central here is absent there. This may exemplify a literature on 
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the importance of subcellular entities to the understanding of conscious- 
ness. Our ignorance in spite of neurophysiological investigations is granted, 
and a science of purpose is demanded. 

Schr6dinger (1958: no cat) claims a religious orientation, yet his 
substantive text is happily free of religion. (In my lexicon, "religion" 
is pejorative.) Thus his discussion of "oneness of mind" mentions 
Upanishads, yet poses two real oneness problems: the agreement between 
experiences of different individuals, and the intuitive unity of mind of one 
individual in the face of a plurality of nearly autonomous control systems 
found in the structure of the brain--close to the baffling agreement of 
ontologies of my Section 2. To assert Oneness and be satisfied is religious; 
to worry about how a diversity congeals to onenesses is atheistic. 

Another parallel to my thought is the notion of progress of physics 
away from space and time. But Schr6dinger does get carried away: 

This means a liberation from the tyranny of old Chronos ... [which] strongly suggests the 
indestructibility of Mind by Time. 

And the slow progress of physics away from space-time is tagged "Science 
and Religion." 

The arbitrary division of experience into object and subject, "objecti- 
vation," Schr6dinger considers an attribute of the scientific approach alien 
to a true study of Mind, which must therefore be pursued unscientifically! 
The division of an experimental procedure into preparation of a state and 
execution of a test in this present work is a species of objectivation, hence 
taking Schr6dinger literally, must lead nowhere as regards Mind. But since 
the division is (merely?) a matter of counting, assembling many experimen- 
tal types from fewer states and tests, and with the same laboratory 
procedflres allowed within the arbitrarily delimited "state" and "test" 
portions of an experiment, it is hopefully not that bad. Since the quantum 
ingredient entails ontological diversity (cat!) when tests happen within 
states, and so problems of oneness, it bears much similarity to questions 
about Mind. 

I write in Section 4 that, though Darwinian mechanisms are not 
teleological, their summary is in a stupid way teleological. Schrrdinger 
finds this reflection also useful (similarly!) but writes pages on "Feigned 
Lamarckism" to explain it. 

Two references to Bohr (1934, 1950) given by Greidanus prompt 
remarks: 

...the unavoidable influencing by introspection of all psychical experience, that is char= 
acterized by the feeling of volition, shows a striking similarity to the conditions responsible 
for the failure of causality in the analysis of atomic phenomena 
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(1934), combined with Bohr's understanding of "the failure of causality" as 
a positive program of trying quantum models, is like my suggesting an MF 
program for psychology. Yet it is hard to move psychologists by advertis- 
ing a "failure"; indeed I find it hard even with a "program." The following 
(1934) is another example of Bohr's misleadingly defeatist tone, where he 
wishes instead to stimulate investigation: 

The strict application of those concepts which are adapted to our description of inanimate 
nature might stand in a relationship of exclusion to the consideration of the laws of the 
phenomena of life. 

The negative tone projects Bohr's modesty enhanced by the absence of 
evidence. 

Bohr (1950) bears an encumbrance: 

... however far quantum effects transcend the scope of classical physical analysis the account 
of the experimental arrangement and the record of observations must always be expressed in 
common language supplemented with the terminology of classical physics. 

The supplement of classical terminology, especially canonical formalism, is 
a dark mystery which almost vitiates the clarity the statement had had had 
it ended with the words "common language." In atomic physics, the 
common language was classical canonical formalism plus electromag- 
netism, but Bohr's implied advice that canonical formalism must be 
introduced along with some model theory before experiments can be 
analyzed in regard to complementarity, or "quantum-logically," is an 
impediment that I have disregarded, except to add it now to the "luxuries" 
of Section 10.5. Bohr himself subtly doubts the need for "terminology of 
classical physics" by calling it a "supplement" to "common language" 
proper! 

Bohr remarks (1950) that commutativity of the difference of coordi- 
nates q l - q 2  of two mechanical systems with the sum pl+p2  of their 
momenta does not circumvent complementarity. This is close to Section 
6.3. A searchlight is nearly cast upon the relativism and ontological 
complexity introduced through the essential neglect of the laboratory 
background for an observation, by Bohr's seemingly pedantic remark. 

The breadth of Bohr's notion of complementarity even reaches (1950) 
vaguely towards metamathematics in his contrast between the practical use 
of a word and attempts at its definition; compare my Section 16.3. 

My final reports of late browsing refer to Colodny (1972). 
Arthur Fine dislikes the term "quantum logic" because ordinary logic 

still governs our writing; Finkelstein disdains such inhibition to stress the 
primacy of experiment. The subtlety in the dual meaning of "'logic" is 
hinted at in Finkelstein's Note 1, p. 65. My own clarity is Section 8; 
subtlety, Section 5. 
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Finkelstein devises classical models for quantum logic. Does this 
detract from my Section 3 on switching mechanisms? 

C. A. Hooker hopes that the epistemological development occasioned 
by quantum mechanics may yet again affect particle physics. The usual 
synthesis of the world from particles in space-time is physics "from the 
bottom up"; physics "from the top down" takes seriously the epistemologi- 
cal priority of experiment however gross the apparatus seems as an 
assemblage of Democritic particles. And.. .  

The world seen as a connected whole "from the top down" might also furnish new insight 
into living processes (an emphasis Bohr also stressed). 

Feinberg's article on particle democracy could be stretched to a claim 
that the "bottom" and "top" approaches coalesce, an observer being a 
large particle. If this is stretching a point, that may be what is needed to 
generalize space-time. 

Colodny's Introduct ion quotes Hermann Weyl (1949, not 1926)2: 

It must be admitted that the meaning of quantum physics, in spite of all its achievements, 
is not yet clarified as thoroughly as, for instance, the ideas underlying relativity theory. The 
relation of reality and observation is the central problem. We seem to need a deeper 
epistemologieal analysis of what constitutes an experiment, a measurement, and what sort of 
language is used to communicate its result. Is it that of classical physics, as Niels Bohr seems 
to think, or is it the "natural language," in which everyone in the conduct of his daily life 
encounters the world, his fellow men, and himself? The analogy with I-Iilbert's mathematics, 
where the practical manipulation of concrete symbols rather than the data of some "pure 
consciousness" serves as the essential extra-logical basis, seems to suggest the latter. Does this 
mean that the development of modern mathematics and physics points in the same direction 
as the movement we observe in current philosophy, away from an idealistic toward an 
"existential" viewpoint? 

This coincides with my criticism of Bohr. My Section 8 presupposes 
"natural language." Comparison with metamathematics dimly ties in with 
Section 16. "Existential" is prefatory to...  

2. A MIX OF EXISTENTIAL AND MYSTIC VIEWPOINTS 

An ontology develops from experience. This "existentialism" seems to 
awkwardly take macroscopic structures, especially people, as more basic 
than atoms. Epistemology vs. physics! 

2The quote is from Appendix C, Quantum Physics and Causality. Analogy with The Structure 
of Mathematics, Appendix A, is hinted at by Weyl more than once. Appendix E, Physics and 
Biology, is close in spirit to the present article. 
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The common "mystic" resolution is that, though experience is the 
source of knowledge, the knowledge gained reveals a unified underlying 
absolute reality, most sharply drawn in the Newtonian view of particles 
moving in one space-time, somewhat blemished by a Copenhagen 
viewpoint. This seems to place people and other complicated junk in a 
properly subsidiary way. 

My point here is that it is the other way around: The existential 
attitude takes greater cognizance of the awkwardness that we are. our own 
"nonelemental" channels of information than does the mystic attitude, not 
less. The universal reality of the mystic is existentially suspicious partly 
because it also is built from the experience of complicated junk. From this 
existential viewpoint, experience in humans induces ontologies, with paral- 
lels in other forms of junk. The induction of an ontology is worthy of 
study; agreement among ontologies in forming a rich and stable practical 
"real world" is baffling, and is a topic. Mystic refusal to entertain such 
questions is unreasonable except in deference to a lack of ideas. 

Out of this baffling agreement of ontologies has nevertheless somehow 
come a mathematics and a science. It is through this science that we judge 
ourselves to be complicated junk in the first place, so that it would be 
inconsistent to refuse the structures of physical theory a prominent place in 
this balance of attitudes. Perhaps physics will refurbish the mystic. 

The perhaps mystic form I prefer for the placement of physical theory 
is to imagine an underlying physical structure. Experience of junk leads to 
distorted glimpses of this underlying structure, which yet reveal much 
about it. A particular ontology is, however, so distorted that in spite of the 
baffling agreement between ontologies, any one individual's or committee's 
"real world" is not even a model of the underlying structure. So the 
underlying structure is not "real." Realities over this structure are never- 
theless of merely secondary scientific interest, the underlying subreal 
structure itself being of primary interest. Reality is not neglected, but is 
placed in a proper subreal context. 

This personal "mix of existential and mystic viewpoints" was implicit 
in my taking the wave function as fundamental in learning quantum 
mechanics, was thoroughly ingrained by reading von Neumarm, and is an 
irreversibly stubborn "Copernican" process of thought. The multiple reali- 
ties in quantum mechanics degrade any one reality to an incomplete status 
congenial to the Berkeley-Hume-Borges analysis (Borges, 1967). Just as 
the earth is no longer a significant center, so now the experience and 
reality of one perceiver is not central in fixing the fundamental, underlying 
structure. 

It may be well to rephrase here: Science teaches us that perceivers are 
complex, and leads us to frame our attitudes around simpler atomic 
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constituents interacting over ordinary space-time. But the same distrust of 
complexity of perceivers can grow into distrust of the reality seen by the 
perceiver, perhaps not so much in regard to the atoms as in regard to the 
space-t ime in which they are to be housed. The very distrust of complexity 
which tends to induce a hard Newtonian mystic real 3-space for the sake 
of the particles, becomes existentialism when carried further. This existen- 
tialism stems not at all from humanistic promotion of human perceptions 
over scientific simplicity, but rather from the reverse, a distrust of all 
perceptions except for a scientifically simple extract. The psychology of 
perception becomes important for the foundations of physics, so that we 
may analyze our intuitive notions of reality in order to see what portions 
may be cast out of the underlying theory. 

. CONSCIOUSNESS IS PROBABLY N O T  A SWITCHING 
MECHANISM: WE MAY BE A L M O S T  ONE-CELLED 

ANIMALS AFTER ALL 

In order for an interaction to convey a property of a system observed 
to the memory of the observer, it is almost necessary for the interaction to 
have a feeble effect on the system observed. Otherwise the value of the 
information conveyed is likely to be vitiated by modification of the system 
observed in the process of measurement. 

Control, on the other hand, implies significant modification. The 
exigencies of optimal control will likely dominate over keeping interactions 
weak to help build a classical ontology. 

Darwinian evolution of optimal control is therefore probably incompati- 
ble with a classical ontology. 

A switching system produces definite output for definite input, except 
perhaps for undesirable noise; one does not expect the intrinsic noise of 
quantum mechanical uncertainty. Therefore, it is unlikely, whatever the 
mechanisms of consciousness or purpose- - the  main control mechanisms 
- -a re ,  that they are a switching system. Moravec (1979) presents a con- 
trary opinion. 

Yet where the interactions are sufficiently gentle that they convey 
stable information, it is useful in a Darwinian sense to be able to store and 
process this information in a switching system. Such a peripheral switching 
system is likely, owing to its elaboration, to be the most obvious part of the 
whole mechanism, without being the whole thing. 

If one relates this to structure of nerves, it is plausible to relate 
switching to interneuronal transmission, and the essential control 
mechanism to mysteries within a cell. One-celled organisms do have 
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control mechanisms, with Paramecium (e.g. Satir, 1961) even having 
switchlike mechanism within its one cell. Once a control mechanism 
appears, the elaborations are likely to be in the peripheral switching 
system. Dictators persist. 

Perhaps also, notwithstanding Section 6, there is after all some sense 
in associating quantum logic with the very small. Ingress into quantum 
coherence effects by means of gross psychological experimentation could 
amount to using a living organism to magnify phenomena of the very 
small, much as atomic physics experiments do, but with equipment devel- 
oped by Darwinian evolution rather than by art. 

4. QUANTUM ONTOLOGY AND FREE WILL 

Remark: Approximations. Those things understood as approximations 
are those things regarded as truly understood. The fundamental level of, 
questions has bypassed such things; they are no longer mysteries. In the 
sense that an approximation is "wrong," those things that are truly 
understood are those things known to be wrong! The attempt to under- 
stand something else is the attempt to show it thus to be wrong. Quantum 
logic shows classical ontology to be wrong, yet sometimes approximately 
right. Through this very attrition of its fundamental quality, ontology has 
become a thing better understood, malleable. The inexactness of its classi- 
cal image becomes subject to investigation, which was not true when 
reality was perfectly sharp. 

Consciousness is one of the "weapons for survival" induced by the 
mechanisms of Darwinian evolution in living forms. Control requires 
frictive dumping of entropy. Maximizing strength of interaction where 
control requires strength turns on quantum ontology. The subjective aspect 
of branching is not branching itself, but random behavior (Lubkin, 1979), 
nonzero lower "uncertainty" bounds on probabilities. This approaches 
"free will," yet does not arrive: each branch of reality, after an event 
involving an irreducible quantum element of "choice," is "occupied." 
Straightforward free will would have the will choose which branch will 
become real, or would at least improve over chance. So far the "free will" 
is no better than noise. 

It is the part played by control, or Darwinian evolution, which does 
better than noise. Although the mechanisms of Darwin are not teleological, 
their summary is in a stupid way teleological. Consciousness and ontology 
are tautologically inseparable. The evolution of consciousness is therefore 
also evolution of ontology. The effectively teleological quality of evolution 
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imputes a teleological quality to ontology.-This is saying that that world 
view is evolved which is "best for survival." But since reality is an aspect of 
the world view, not a preset pattern within which the world view evolves, 
the world itself is evolved to "best" fit the organism. 

Now let us shift attention to the day-to-day conscious thought of one 
organism. The formal aspect of control, the development of pttrpose, goals, 
learning, as a frictive process leading to a decrease of entropy in the sector 
of concern, is like Darwinian evolution. This is control along with a 
calculus of purpose, as distinguished from control in a conventionally 
engineered device slaved to a fixed "purpose" extraneously injected. There- 
fore, the fabrication and evolution of ontology in 2-billion-year evolution 
could seep into a theory of consciousness, if the mind gets described by 
matrices of quantum logic, if the elaboration reaches to the description of 
frictive control, and if it somehow grasps that aspect of the state of mind 
that expresses the world view. One cannot go further in free will than such 
bending of the reality of the world to fit the teleology of will. 

The guess that somehow quantum ontology could transcend the 
inability to choose a branch of reality, and thereby achieve a nontrivial 
free will, was ineffectively told to me by Henry Stapp ~1961. See also 
Lucretius (Latham, 1951, pp. 66-68). 

A discussion of free will by Martin Gardner (1973) prompts further 
words. 

There are two aspects of "free will" so different that it perhaps seems 
arbitrary to lump them. One is a mere lack of predictability. Whether 
unpredictable mechanisms exist within the mind is more interesting; in 
order to try to define them one can exclude coin-tossing from free-will 
experiments. 

The really interesting aspect of free will is effectiveness of control. 
Even if of the alternatives it is clear which one is best selected, there is the 
question of whether reality will be bent that way. I have suggested that 
control and noise are inseparable, strength of control introducing quantum 
logic, hence, uncertainty principles. "Free will" almost says this anciently: 
"free" signifying arbitrariness hence noise, "will" signifying control. 

In Gardner (1973), a superbeing is posited who can predict which of 
two choices a player will take. Oddly enough, this superbeing is no t  

described as a Poker Master. If the player's probabilities for dropping into 
the two bins 1,2 are calculable from amplitudes a, b in a quantum psychol- 
ogy to be lal 2, Ibl 2, with la[2> Ibl 2, then the most astute Poker Master could 
predict the outcome no better than a fraction ]al 2 of the time, and he 
would do this well only by always betting on bin 1. This is because both 
branches of the wave function coexist coherently for possible tests other 
than the 2-bin test of the experiment. 
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Some place for quantum effects in psychology may hopefully be 
discovered in experimental domains built up out of fast and banal re- 
sponses (e.g., Section 15.2). But the quantum effects should be volatile in 
matters described as conscious decisions. A "decision" based upon in- 
doctrination is predictable. Only among the nebulous original decisions 
should quantum effects be manifest. It is hard to be repetitiously original; 
quantum psychology experimenters face a design problem in seeking 
intelligence while avoiding learning. 

5. HOW CAN ONE PURPORT TO THINK IN CONFLICT 
WITH LOGIC? 

All the arguments here are meant to be understood in a convention- 
ally logical way. "Quantum logic" is for relating theory to experiment. 
Insofar as this may be kept separate from theory, there is no inconsistency. 
The reduction of experimental counts in bins of tests by means of MF, 
Section 9, is indeed as ordinary a calculation as anything else done on 
paper or in computers; while quantum logic shapes the theoretical half, it 
is not there in the metalinguistic rules. 

But insofar as our language is also part of experience, there should be 
no natural wall between the two. If there is no natural wall between a 
nonclassical logic of events and a classical logic of our expressed thoughts 
about these events, then there must be an artificial wall, and there is: 
Greek axiomatization. This image of an axiomatic system as a wall 
between experience and further language is commonplace. More on the 
wall in Section 16.3. 

The emphasis on a new "logic" is serious, while paradoxically not 
impugning traditional reasoning. That thinking be written out in new rules 
of "'quantum logic" is not advocated. But when thought is the object of 
study, quantum correlations may be revealed. 

The analogy between the wall of axiomatization and the cut between 
system and measurement device (von Neumann, 1955) will probably have 
occurred to the reader. 

6. WHAT IS THE CONNECTION BETWEEN SMALLNESS 
AND ONTOLOGICAL INTERFERENCE? 

6.1. Complexity vs. Interference. The following standard theorem of 
Ordinary quantum mechanics gives sufficient conditions for interference to 
be undetectable; it describes how messy coherence looks like incoherence. 
Objections to the possibility of quantum mechanical interferences in psy- 
chology based upon it make it and its proof relevant. 
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Theorem 1: Interference Theorem. If states x andy contain orthog- 
onal attributes that are not involved in an observation of ax + fly, 
then that observation cannot distinguish between states lax + fly) 
(ax + fly[ and 1~t21x>(xl +IB [2ly)(y[. 

The meaning of "orthogonal attributes" is that (x[A[y)=O 
for the observables A (or acceptors) associated with the procedure 
of observation or test (Lubkin, 1979). This is most often known 
when there is a tensor-product structure with x = x 1 |  2, y =Yl • 
Y2, and where (x[y)=(Xl,Yl)(X2,Y2)=O because both (x2,Y2) is 
known 0 and A =Al |  

Proof That the two states are indistinguishable follows from 
Tr[ax + fly~ (ax + flylA =Tr([a[2lx~ (x[ + [fl [2ly~(yl)A = [a[2(x[A ]x) + 
[fll2(ylA[y), owing to the given vanishing of the "interference" terms 
(x[A[y) and (y[Alx).  [] 

The interference theorem may be paraphrased: Only states simply 
different may visibly interfere. If an observation is to sense the relative 
phase a/B,  then x and y must be simple, or if not, their complicated 
attributes must coincide or at least be at an angle in Hilbert space 
significantly different from a right angle. 

If x andy are states of a psychological or sociological system, they are 
very complicated from the point of view of atomic physics. States worth 
labeling distinctly owing to properties discernible through psychological 
tests may be expected to have complicated atomic differences, and so be 
incapable of demonstrating interference. This would leave quantum psy- 
chology dead. 

The most direct possibility yet open for interference is a psychological 
difference which is simple even on the atomic level. If the dual evolution of 
control and of ontology under the Darwinian stress of optimization indeed 
requires ontological interference at the center of control, and if inter- 
ference phenomena cannot be atomically complex, then the center of 
control must be atomically simple. If so, the volitional acts of living forms, 
evidently an amplification of "thoughts" involving less matter and motion 
than the consequent "acts," have been amplified all the way up from the 
atomic level. This would be analogous to the amplifications that constitute 
the laboratory procedures of atomic physics, in building differences simple 
on the atomic level into "macroscopic" differences. 

But in a formally new description of a psychological system by a state 
space, the atomic viewpoint need not be recognized; the states may be 
formally simple without regard to the above. The notion that broad 
interference phenomena are therefore possible arises. This may be unduly 
simple-minded, like expecting two-slit diffraction to work while one slit is 
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being monitored just because one has not imagined how to introduce the 
monitor into the theory. However, the criticism that complexity precludes 
interference follows from the tensor-product construction of the complex 
from simple parts. This criticism becomes unconvincing when the atomi- 
caUy complex system is newly invested with a state-space structure not 
referent to atomic structure at all. 

Whether interference effects in psychology are subtle in being truly 
simple atomically yet being demonstrable by amplification outputting 
psychologically, or whether interference effects are gross, indeed whether 
they exist at all, is a question for experiment. If subtle, then experiments 
will have to be fast and careful. The psychological states x and y must not 
be distinguishable by something as "classical" as even one neuron's poten- 
tial; one must test ax + fly by amplification before the intervention of any 
competing amplification which threatens to convert the originally atomic 
"states of mind" x and y into objects distinguishable by means of electric 
potentials across cell membranes. 

"Raster dynamics" poses a hope for gross ontological peculiarities. 

6.2. Raster Dynamics. I return to our mascot in order to show that 
the argument for ontological branching is so general as to possibly apply in 
physical contexts not usually associated with quantum mechanics. 

The evolution of system's state x i together with observer's state Yo, 
ready to observe, to a combined state wherein the observer has learned 
about the system's state, is denoted xyo---~x;yi; see however Section 6.3, 
Caveat. "xi'" instead of x i provides for some perhaps slight modification or 
recoil of the x system's state in response to the interaction. Then the 
linearity of motion and the possibility of preparation of the coherently 
superposed x state Y, iaixi imposes ontological branching upon the observer 
or joint xy  system: ~.iaixi.Vo--~iaix;Yi. No one outcome i is chosen; all 
appear together in a coherent sum. If Xl,X'  1 are undecayed radioactive 
nuclei and XE, X ~ are decayed, Yl a live cat, Y2 a dead cat, i=  1,2, we have 
the ontologically branched cat of Schr6dinger. Meow. 

The argument uses linearity of motion. In this regard it appears 
applicable not only to quantum mechanics but also to any theory where, 
possibly in some approximation, there are linear equations of motion, in 
particular to the theory of small vibrations in classical mechanics. 

The argument also uses tensor product for putting the x system 
together with the y system to form a compound system, and treats the 
observer as a y system: The observer lies within the domain of validity of 
the linearity of motion and of the rule that combination of systems be 
effected by multiplication of their representative linear-space elements or 
"wave functions." In this regard, the argument still fits quantum mechanics 
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considered as a theory that ought in principle to encompass states of the 
observer but does not fit ordinary classical theory of small vibrations, the 
observer being neither usually regarded as classical, nor small, nor a 
vibration. 

It is amusing to seek nevertheless to impose the conclusion of onto- 
logical branching upon classical mechanics, at least within its small-vibra- 
tion sector, by seeking a special context wherein the unusual extension of 
linearity of the xy complex and the multiplication of systems are valid. 

For  this purpose, I have for a long time had a vague picture of a 
complex "vat of jelly," constituted of ordinary matter but being described 
in a classical manner, at the level of phenomenological engineering, in 
terms of linearly superposable wavesl The waves are gross structures like 
water waves, the wave functions are ordinarily "real" to the engineer using 
his eyes to see them, not subtle tools of atomic physics. What is vague is 
that the jelly is to describe at least an xy complex, not merely the x system, 
and that the normal modes naturally be indexed by pairs (i, j )  of integers 
so that the (i, j ) th  wave (xy)~ is roughly a product xiy j of simpler waves 
xl,y j in "factor" systems. Although "vat of jelly" fails to describe the 
factoring structure, that factoring structure is a specialization. What  re- 
mains to be done in rendering the classical mechanism vivid is details of 
how to engineer a specialization. 

About "factorization": The xy system should have its state space 
linearly spanned by the xiy_i, there should be approximate motions 
xi(O)yj(O)---~xi(t)yj(t), t denoting time, where xy joint  motion factorizes into 
separate x motion xi(O)--~xi(t ) and y motion yj(O)---~Yi(t), but the exact 
motion should not factorize, this lack of factorizability of the joint motion 
constituting the interaction. 

We also wish to regard the y system as enough of an observer to have 
a point of view or at least an evolving memory storage. Otherwise, the 
combination of different y~ in state ~ia ix ' y  i would not bear the character 
of ontological splitting. The reader will not be surprised that the injection 
by construction of a mechanism for consciousness in the y system has not 
been accomplished or even attempted by the writer. 

But imagine all these things done. Then, even while an ordinary 
engineer watches the waves move in his vat of jelly, within that vat there is 
an observing y entity which undergoes ontological branching. For  us to 
examine a reality for this y entity, a "'y viewpoint," we must select one 
branch. In the y viewpoint, the results of experiments on the x system can 
be anticipated only statistically, the pure or mixed state of the x system is 
described by a wave function or density matrix associated with a method 
of preparation in such a way that the state may be known owing to prior 
statistical study of states similarly prepared, but not directly and not even 
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by repeated trials of only one single method of preparation: There is a 
whole quantum mechanical family of relative realities associated with the y 
system factor of the vat of jelly where not only are the realities mutually 
unreal, but they are of a different nature from the overall reality seen by 
the external engineer. 

"Raster dynamics" is a program to replace the word "jelly" by some- 
thing closer to the desired structure of tensor factorization, yet without 
attemptingy memory: Imagine a rectangular array or "raster" of masses at 
each intersection of I horizontal lines or "rows" and J vertical lines or 
"columns." The IJ masses interact through some complex of springs so 
arranged that it is possible to "bow" the whole raster with row frequencies 
which excite all the rows so similarly that the column linkages are not 
activated, the rows moving in unison, with a motion therefore describable 
in terms of the motion of a simpler system, one row. There are to be a 
distinct set of column frequencies for bowing the columns in unison without 
activating the row linkages; these reduce to one column. 

I suspend further invention of the raster; the nature in which the 
factorizability is "classically modeled" should be already clear. Of course 
factorizability should be inexact to depict interaction. 

The usual picture of a "jelly" would involve a single 3-space vector 
displacement of a 3-space argument, at any one time. Another factor could 
be introduced by arranging for a classically intricate "unit cell," leading to 
Rayleigh-like "optic modes." This "jelly" is now like the "raster." 

It is well known that quantum mechanics can be considered as 
contained within the small-vibration theory of classical mechanics. My 
hope that nonlinear corrections within a truly classical theory of moderate 
vibrations could be followed within an internal y system's quantum ontol- 
ogy, in order to present linearity in quantum mechanics as a smallness 
approximation, was Lubkin (1968). The difficulty of marrying nonlinearity 
with "tensor product" has proved too confusing for me. But it seemed that, 
for a slightly nonlinear Schr6dinger equation, the tree structure of an 
internal observer's ontology remains, in spite of 'the possibility of sharper 
experiments which support questions that refine the lattice of sharp ques- 
tions from subspaces of Hilbert space to subsets. The duller experiments 
still lead to a quantum ontology if the observer himself, as is intended in 
"raster dynamics," is built out of small vibrations. An independent judge- 
ment to this effect appears in Mielnick (1980). 

The engineering of a raster here is intended merely to reveal the 
internal ontological complexity of a linear classical system, not expressly 
for nonlinear generalization. 

So far I have sketched a raster in our own standard world of atomic 
physics, with our own ontology within the branching structure of ontolo- 
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gies proper to the ordinary quantum mechanics of polyatomic systems, and 
with an ontologically disparate branching structure to describe the realities 
of the y system within the raster. The y realities "within" the raster are not 
for us possible realities: Though we may build other worlds, we may not 
live in them, being ourselves stuck in the world of atomic physics. 

In the sequel, it is argued that this clarity of delimitation of our own 
"ontological range" is not with certainty that sharply drawn, though we 
cannot expect to directly identify with they system of an engineered raster. 
As a further prelude to this goal, it is instructive to consider a second 
example of ontological complexity, associated with a debate about super- 
selection rules) I make the point telegraphically in Lubkin (1971), and in 
its title, Accepting Superselection Entails Rejecting Complementarity. For 
clarity I redo this under a new slogan: 

6.3. Quantum Mechanics with Complementarity is Dirty. The dirt is 
the unmonitored transfer of one quantity q, measurable but not being 
measured, to a system being prepared to have a definite value for a 
complementary property p. This physically dirty aspect underlying the 
deceptively precise theory of state vectors in a Hilbert space was clear to 
Bohr, One learns about complementarity, superselection, and also about 
ontological relativity--Bohr's complementarity encompassed a good deal 
of ontological relativity. 

The system of interest is system 1. It is studied by a laboratory, system 
2. The 1,2 complex is, in turn, studied by another laboratory, system 3. 
Whether some "4" looks at 3 or not will not specially concern us. 

Let q be additive and conserved: ql,2=ql| + l| and if 1,2 is 
isolated, the value of ql,z is a constant of the 1,2 motion. 

Let the 1, 2 laboratory initially be in an eigenstate of pl,2, the operator 
for an additive and conserved complementary property p appropriate to the 
1,2 system: complementarity here refers to noncommutativity of p and q 
operators, not to more particular commutation relations. Indeed, let this be 
because the 1 system hasp valuep~ and the 2 laboratory, p valuep~, so that 
pl ,2-pl+P2 is the value ofpL 2 as seen by 3. 

Next, within the 1,2 system, 2 measures the q property of 1 as defined 
by 2 while 1, 2 remains isolated from 3. The 1,2 state is now of special ql 
eigenstate correlated form Y.aix.,Yi, where qlxi---q~ixi andy i is the 2-labora- 
tory with a record that the 1 system has qi value q~i. The overall 3-seenp 

3Wick, Wightman, and Wigner introduced the superselection rules (1952). They are called 
into question obliquely in Lubkin (1960). Clear statements are Aharonov and Susskind 
(1967a, b) and Lubkin (1970). Also see Epstein (1960), Rolnick (1967), Hegerfeldt, Kraus, 
and Wigner (1968), Wick, Wightman, and Wigner (1970), Mirman (1969, 1970, 1979), 
Lubkin (1977). 
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value is still P'l +P~. However, the state x i relative to the 2-observer yi, in 
being a q~ eigenstate for 2, is not described as ap~ eigenstate by 2. The mix 
of 2's Pl eigenvalues involved in 2's state x~, on which ql assumes value q~i, 
is in contrast with 3's sharp value p~ prior to the 2-measurement of 1. If 2 
and 3 agree as to p values of 1, then the 2 measurement has involved an 
unmonitored transfer of conserved quantity p between the laboratory 2 
and the system 1--unmonitored else the amotmt of change of thepl  value 
would be known and the changed Pl value would be sharp, but it is not 
sharp. If p is momentum and 2, 3 are both massive, then 2's recoil velocity 
is negligible, and 2, 3 will agree as to p values of 1. 

Hence, in order for the 2-laboratory to recognize both p and q 
eigenstates of the 1 system as legitimate in the state space of 1, the 
2-theoreticians must tolerate uncontrollable transfers of quantities between 
their laboratory and the system 1, at least in the process of forcing the 
system-1 state from one definite eigenstate (of p) to another (of q). 
Although system 1 has associated through all this a Hilbert space with 
clearcut states before and after, with the 2-system formally in the back- 
ground for the 2-theoretician, this is only in virtue of a theory willing to 
tolerate 1-2 contacts that allow unmonitored transfers of quantities, con- 
tacts like those of an open thermodynamic system. The theory requires dirt 
under the rug! 

It is I think because this can feel sloppy that superselection rules are 
favored for some quantities like electric charge. Such superobservables 
commute with all physically legitimate density matrices. There is no 
complementary measurable quantity; a physically achievable pure state 
must be an eigenstate of charge. 

An obvious violation is a grounded conductor. The charges here lack 
the empirical individuality of particle tracks in a photograph, that is the 
requisite sloppiness. It is not clear that the conductor has a definite 
number of electrons, even if the state is the well-defined ground state at 
absolute zero. The ground is part of the laboratory, system 2, and the 
charge on it does not count; only the charge on 1, the conductor, counts, 
the quantity being uncontrollably transferred being electric charge. What 
"the charge" is depends on where the conductor ends. If it is delimited 
without regard to charge and attached to a "ground" not part of the 
system of interest, then a state of conductor and ground with definite net 
charge will be a coherent max of terms with different values of conductor's 
charge; this is made plain by  the familiar coherent sharing of an electron 
in a bond between two atoms. 

This coherence will become lost to us if we say, the ground itself is so 
uninteresting that we replace the density matrix of conductor and ground 
together by the reduced density matrix obtained by trace on the ground's 
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labels: Landau tracing. 4 Such would be appropriate to predict expectation 
values of observables of form I |  the Kronecker product of a unit 
matrix in the ground's operator algebra with some operator A in the 
conductor's algebra: The coherence of terms of different charge matters 
only for experiments that do not neglect the state of the ground that much. 

Whenever superselection rules seem to hold, suspect oversensitivity to 
the uncouthness of Bohr's complementarity, and seek to widen the empiri- 
cal domain so as to bypass the rules in the wider domain. The rules may 
yet hold in the narrower domain, and physical laws may even be ade- 
quately expressible in relation to the narrower domain, so the rules can 
represent predilection rather than outright error. For example, a rule that 
all states are electrically neutral is stronger than superselection of charge. 
Yet almost all of physics may be fit into this straitjacket by compensating 
for any charge by a very distant shell of opposite charge. Charged states of 
the universe cannot be so treated, yet I perversely prefer the assumption of 
neutrality for the universe (if the universe is defined) to any less global 
superselection rule! 

If the importance of coherence is difficult to contemplate, let "charge" 
signify momentum, and the complementary property, "position" or else the 
definability of well-localized electron orbitals. Correlated momentum su- 
perpositions are with respect to a momentum reservoir or "ground", in a 
1,2 system isolated at definite total momentum. Subsequent study of such 
non-plane-wave orbitals in which the coherence of the plane-wave compo- 
nents matters, must make deeper reference to the "ground for momentum" 
than is possible through a reduced density matrix. 

My earliest clear example (Lubkin, 1970) is where the "momentum" 
eigenstate 1,2 is an unexcited hydrogen atom in a large box (so that "plane 
wave" is finitized) and it is position of the electron, system 1, that is under 
consideration. The "laboratory" 2 is the proton. In respect of 2's fiduciae, 
the system 1 is localized to within ~ 1 A. To the outer laboratory 3, the 
electron is as delocalized as the whole hydrogen atom, since 3's momentum 
ground is not the proton. 

So even for position, momentum, and angular momentum, there is a 
poorly analyzed complex of definition relative to fiduciae beyond the 
classical relativity of translation and rotation in space-time (Lubkin, 1977, 
Mirman, 1979), classical shifts of fiduciae being powerless to change 
sharpness. There is yet an ill-defined story about observers untranslated 
and unrotated, but differing in details of what is "in" the system and what 
while not "in" the system is yet not "'out" enough for Landau tracing. 

4yon Neumann (1955, Section VI.2, footnote 212) credits Landau (1927) with discovery of the 
production of mixed subsystem states by partial tracing. 
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Caveat: Prior Correlations? Not only does correlation between labora- 
tory and observed system develop through a single measurement but 
earlier correlations may exist from the measurements which prepared the 
state. The tensor-product representation Y~aix.,y o of the coming upon a 
state Eaix  i by a ready-to-measure devicey o prior to measurement of x b y y  
in von Neumann's discussion of the quantum coherence developed 
by measurement may be faulted in perhaps being insufficiently co- 
herent before the measurement. The product state is nevertheless enough 
for ad absurdum refutation of absolutely neglecting all "macroscopic 
coherences." 

6.4 Connection between Smallness and Interference, Concluded. We 
have seen that the ontological complexity of quantum mechanics may in 
principle be visited upon entities within a grossly engineered "jelly" or 
"raster," without any regard to questions of atomic structure of the raster: 
h was not mentioned. These ontologies "internal" to the raster appear to be 
disparate from our own reality. 

But even if our own reality as observed is narrowly considered in 
conventional particle physics, its status is muddied by questions of defini- 
tion of important laboratory correlates, "grounds," which are not officially 
"in" the system, yet are not entirely to be neglected either. 

What we interact with, our sequence of actual experiences, forms our 
notions of reali ty--a truism somehow tied to background reservoirs. The 
presumed 3-space context of traditional physics has to do with the rigidity 
of solids (Einstein, 1953; Lubkin, 1964). These things are not absolute. 
Much of their flux escapes personal choice, yet may have been chosen as 
part of Darwinian evolution of solid-associated life from prebiotic forms 
(Schr6dinger, 1945). 

If reality is a free-wheeling affair not yet pinned down even in particle 
physics, then it is presumptuous to say that a progression of choices of 
what is to be strongly interacted with may not induce an ontological drift, 
to a reality whose simplest entities are even more vaguely related to the 
atoms than is the grounded conductor. 

The interference theorem limits this, yet one must not be overhasty. Is 
interference between economic states x and y,  grossly defined entities, 
rejected because some detail different in x and y is not included in 
subsequent tests? Only if the detail may be isolated as a tensor factor 
within the economic model's framework of states, etc., with care to beware 
of rashly "tracing out" over associated "grounds" where inappropriate. 
Maybe the model misses the detail carelessly, and it can be put in as an 
inessential change yet so as to validate the interference theorem--but  
perhaps such management of a detail is a way to miss the point, to make 
an essential change. 
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Without deciding whether our reality can really drift so far away from 
atomic physics as to get tangled up in something like the "raster" within 
some new purely theoretical but decisive "ontological dynamics," we can 
try by experiment to see what interference effects there are, and therefore 
be guided by the real facts of reality in formulating how dirty our own 
quantum ontology can get. 

7. QUANTUM LOGICS WITHOUT OUR REALITY 
BRANCHING 

Relativity of reality is the most liberating notion in quantum 
mechanics, and a true quantum structure will impose it upon us. Inter- 
ference of states that include us as observers is part of understanding the 
relationship of amplitudes to probabilities (Lubkin, 1979). 

It is possible, instead, to imagine a quantum format analysis of an 
empirical domain, so limited as to preclude the inclusion of most systems, 
in particular not of us. The probabilities might even be known to appear 
owing to crudity in the techniques, like nonquantum coin tossing, while 
not being comprehended, however, as such within the given empirical 
domain. 

If the domain described is closed in itself and does not reach out for 
the universe, it may, in being separate from issues of relative reality and 
presumed effects of the interference theorem, involve data fits with highly 
noncommutative small matrices. 

This could be exemplified by an economic study divorced from the 
idea of the economist as a firm. The fact that one is free to instead 
consider larger systems that do comprise the observer, I consider more 
interesting than the notion of such new isolated quantum formats. 

The idea of the "classical" jelly or raster, Section 6.2, may illustrate 
more clearly the possibility of an isolated quantum logic containing its own 
structure of relative reality for a system of internal observer states, but 
divorced from us. That was explained in terms of analogy between the 
classical equations of motion of small vibration and the Schrtdinger 
equation, not in terms of an empiricism of states and tests. But we can tack 
one on. If the states are certain "bowing" procedures, the tests assignation 
of positive numbers Pl . . . . .  Pb according to the response of b-channel 
acoustic analyzers, rather t h a n  probabilities, it is possible nevertheless to 
imagine MF as the tool for contacting the system. 

Construction: Dials to Probabilities. Now, let the dials reading P i . . . .  ,Pb 
be replaced by a Rube Goldberg apparatus: Small amounts of a dye are 
automatically introduced into b identical preparations in the proportions 
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PI: " ' "  :Pb, and a single photon is reflected back and forth through all the 
preparations. Its eventual absorption by the dye is considered certain, and 
leaves a signature in the appropriate vessel. This also escalates to ring a 
bell, so we know when the photon has been registered. We are sensitive to 
the exigencies of quantum logic, and are unaware that the whole Pl: ... :Pb 
information is potentially available at once nonstatistically on dials, and so 
reprepare everything after each single photon count. This clumsy "photon 
dial" introduces normalization of the p~ . . . . .  Pb, the photon registration 
probabilities being not Pi b u t  pi/~b= lPj" 

However, we produce an analysis of an empirical domain by MF, the 
one-dimensional projections lead back to a Hilbert space. An analysis of 
the whole into parts according to tensor factorization and other "luxuries" 
of Section 10.5 could approach the nature of systems effectively from a 
standpoint of their own internal ontologies of convenience, even if our own 
ontology is not essentially involved. 

8. LOGICS 

Metaphysical Definitions. Domain, State, Test, Trials. An  empirical 
domain is defined by a list of experimental procedures. I will require 
throughout that each procedure be "factorizable" into a procedure of 
preparation, and the execution of a test. The ith procedure of preparation 
will be said to prepare the ith state, A test or b test is clearly defined only if 
it has b specific possible outcomes, or "bins", numbered 1 . . . . .  b. A single 
trial of the test is a single performance of the procedure for preparing some 
state coupled with the procedure for effecting the test. The bins must be so 
defined that precisely one of the b possible outcomes actually happens, in 
any one trial. The process by which preparation of the ith state is coupled 
to executing the j t h  test to give a trial of type (i, j) ,  must be empirically 
defined. Unless a method of coupling is procedurally given, the empirical 
domain has not been defined. 

The experimenter determines P,7~,, the probability that a trial of type 
( i , j )  eventuate in bin k out of the bj possible bins of testj .  This is done by 
rerunning the whole procedure for preparing state i and effecting test j ,  
once for each single count in some bin, until very many counts, n k in bin 
k, have been accumulated. Then Puk = n k ( n l + ' ' ' + n b j )  -1 are the 
frequency-based empirical probabilities, subject to vicissitudes of statistical 
inaccuracy which will be overlooked: The "law of large numbers" and a 
guarantee of independence of the trials will be taken to justify that the PUk 
can eventually be found by experiment. 
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Definitions: Logic, State, Test. A logic is a Puk function, i.e., a map p:  
(i,j,k)--->pg~, from triples of labels, conveniently integers, to nonnegative 
numbers p~/k. There are s state labels i =  1 . . . . .  s, and t test labels, j =  1 . . . . .  t. 
The m a p p  need not be defined for all st values of (i,j). However, for such 
(i, j )  that p is defined, the set of k for which it is defined is 1 . . . . .  bj, the 
mapj---~bj specifying the bin number of test j .  Extension and restriction of a 
logic is defined by extension and restriction of its p function. Restriction of 
the logic function to a fixed state label i defines state i, restriction instead 
to a fixed test label j defines test j .  

Remark: Histograms. A trial of type (i, j )  is a procedure eventuating 
in a selection of one among bj bins. Any histogram may also be thought of 
in this way. Unfortunately, an isolated histogram provides a definition of 
Pok only for one fixed type (i, j ) .  Such information is a "logic" insufficient 
to yield separate pictures of aplural set of states i and aplural set of testsj. 
The separation of experiences (i, j )  into a somewhat "objective" world of 
alternative states or inputs i, and tests or output procedures j ,  is what MF 
and such are about. Even if for each i of several, Pvk is defined only for a 
unique j ,  the notion of state-test factorization is empty. In the sequel, we 
instead require many different tests, distinct j ,  for most single states i, and 
many states i available to most single tes ts j  (Stapp, 1971, 1972). 

9. T H E  MATRIX FORMAT, MF 

This section states MF prescriptively; discussion follows in Sections 
10-14. 

9.1. Prescription, b-plex. The object is, given a logic, to associate a 
square n • n Hermitian nonnegative matrix P; to each state i and another 
such matrix Ajk to each bin k of each test j ,  (j, k)~Ay k. The value of n is 
unknown. However, the larger n is, the more parameters the given data Pok 
must determine. In the general spirit of a fitting of parameters one seeks a 
fit for the least n possible. 

It is possible that distinct procedures of preparation i lead to identical 
state matrices Pr The state matrices Pi are the familiar density matrices and 
have trace 1. 

The test, bin matrices Ay k are the acceptors. Like the state matrices, 
these are unknown originally, and different bins of the same or of different 
tests may or may not eventually turn out to have equal aceeptors. The 
acceptors need not have trace 1. Instead, the b matrices A 1 . . . . .  A b for all 
the b bins of any one b-bin test or b-test are required to sum to the unit 
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matrix, I. Such a list of nonnegative Hermitian matrices which sum to I 
will be called a b-plex. 

The logic limits the matrices, by TrPgAj~ =Pok. 
MF, in summary, is a problem to find matrices Pa,-.-,Ps; A 11 . . . . .  

Alb,; ... ;All . . . . .  Alb ,, for the s states and t tests, t he j th  test having bj bins, 
all n • n normegative Hermitian matrices, 

Pi >~ O, Ajk >1 0 

such that 

TrP i=  1 

bj 

E Ajk=  
kff i l  

and 

Tr PiAjk =P#k 

Aj~ is a whole matrix, not the (j,  k)th element of matrix A. 

9.2. Generality, Classical Format, CF; Good for Ordinary Quantum 
Mechanics. Lubkin (1979) reviews how a Hermitian matrix A is associated 
to a traditional test procedure, so as to give Tr PA for the expectation value 

b Y,t.lpiai over the b bins, in a Schr6dinger-cat-like context; but the reader 
will of course already be familiar with the TrPA formula in quantum 
mechanics. Section 10 builds from this to MF, which encompasses 
ordinary quantum mechanics in the ordinary way, except for having n 
finite. 

Significantly, MF encompasses classical logic. A classical MF solution 
is one with commuting matrices (see below), and conversely any finite 
classical logic can be expressed that way. 

Perhaps there is a smallness of something physical that is responsible 
for the linearity that makes matrices relevant. Such smallness is likely to be 
challenged first in new physics, not in psychology, but who knows? 

More General Formats? Real Format, RF. Logics, Section 8, have no 
evident linear structure; MF, Section 9, is committed to complex linearity. 
If the (state, A)---~probability mapping is required linear in A, we get the 
TrPA formula and MF. For literature seeking to deduce linearity, see 
Gleason (1953), Mackey (1963, Appendix). Measurement theory of a 
slightly nonlinear Schr6dinger equation, perhaps through raster dynamics, 
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might teach us something. For the present, I comment on the variants 
obtained by replacing complexes with reals or quaternions (Finkelstein, 
Jauch, Schiminovich, and Speiser, 1962). 

Imitating MF with matrices of real numbers, real format or RF, can 
obviously be considered a special case, not a generalization of MF, but see 
the section on Nonconjugate Cousins below; also replace U(n) by O(n), 
and that's that for real quantum mechanics. 

One might expect a similar comment for quaternionic quantum 
mechanics because of the representation of quaternion d+ ai + bj+ ck as 
complex matrix 

d+ c ( -  1) '/2, a ( -  1) ' /5 -  b ] 
a ( -  1) '/2 + b, d -  c ( -  1) '/2 J 

However, the positive definite inner product (q',q)=Y,~.=lVL:qi of quater- 
nionic n-tuples fails to square to form TrP'(q')P(q) owing to noncom- 
mutafivity of quaternions, making it doubtful that 2n• MF's TrPA is 
relevant; more physically, putting simple systems together into compound 
systems is there a difficulty (Lubkin, 1979). Compounding, important itself, 
is also part of forcing the probabilities out from the mechanics. So though 
the abstraction of a lattice leads to a lattice of quaternionic subspaces, 
there may not be a true quaternionic quantum mechanics to worry about. 

David Finkelstein points out that there are quantum logics with a 
finite number of elements. Those obtainable by imposing phase restrictions 
on state vectors in ordinary quantum mechanics will also fall, albeit 
awkwardly, within the scope of MF. 

Classical Logic as a Special Case, CF. MF restricted to n • n diagonal 
matrices will be called classical format, CF, or CF n. The rest of this section 
should make the sense of that clear. CF is later used to pit classical logic in 
CFn2 form against n • n MF quantum logic, Section 15.2. 

Classical logic has little to do with classical mechanics, more to do 
with the classical mystic attitude. Indeed suppose that every state is 
negligibly modified by every test in the empirical domain, so as to be 
available unmodified for other tests. Then one can replace the tests 
originally in the domain by one universal test, consisting of the succession 
of all the original tests, each one, furthermore, performed very many times. 
This universal test can in one such giant trial pick up the probability 
distributions over the bins of each original test. Pick some not too large N, 
and invent a finite list of new bins for the universal test which roughly 
designate these distributions, e.g., as follows. A new bin is specified by the 
list (j,k)---~mjk/N, where the mjk are positive integers < N  such that 
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(mjk- -1) /N<pjk<mjk /N,  and Pjk is the known but formally unknown 
probability to be remeasured in a new trial that the state being universally 
tested drop in bin k of original test j .  We expect only one bin of the 
universal test to register for every single universal trial. 

Notice the disrespect for the original notion of single trial. The idea 
that the state is negligibly disturbed by the original tests has here been 
made responsible for this disrespect. Instead, the mystic attitude, a convic- 
tion of apprehensibility of a concrete real world, may be made responsible: 
Even if tests spoil the state, necessitating fresh copies for plural trials, this 
is regarded as incidental; the refreshment technique is considered a clumsy 
substitute for better ideal tests which would gain equivalent information 
without disturbing the state. The mystic notion of the concretely real state 
existing by itself with properties independent of any process of observation 
a~mounts to this, our learning properties without essentially spoiling the 
isolation. 

Indeed, this "mystifying" device of many trials allows the association 
in quantum mechanics of a state matrix P to each state, mod conjugation, 
if there are enough types (i, j )  of experiment. In quantum mechanics with 
completion of states by "rouletting" or mixing, the states are mixtures of 
pure states; let these mixtures be called generalized wave functions. (The 
map i~[( j ,  k)~Puk] is a generalized wave function appropriate for logics in 
general.} If the multiplicity of trials required to fix a generalized wave 
function is disregarded by not distinguishing multiple preparations of the 
same state from a single preparation, then all logics look classical. Quan- 
tum logic is existentialist in insisting on the priority of the individual 
experience over any other notion, refusing to bury the elemental trial 
behind a structure of repetitions before presenting it as a "trial" to the 
apparatus for generating theoretical elements to represent the states and 
tests. The repetitions are fine, but the elemental state, test, and trial 
without repetitions, are explicitly not rejected as part of the empirical 
domain. 

The "mystifying" transformation of any logic produces an empirical 
domain and a logic where the values P~k are all 0 or 1, and there is only 
one, universal test. The index j is not needed; Pik is the probability that 
state i register in bin k of the one test. Also, Pik ---- 1 for precisely one k for 
each i. Identify states which yield the same probabilities for all tests, i.e. 
here for our one test. Then at most one state i has P~k = 1 for given k. Drop 
bins k where no state ever registers. Renumber the remaining b bins so 
that Pik -~ 8ik" 

There is now a set of b elements, the states, and one test, where state k 
simply proves itself on one trial by activating bin k. The logic is degener- 
ated to an Aristotelian labeling of distinct things by distinct names. The 
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classical lattice of sharp questions (Section 10.3) corresponds to 2-tests 
formed from subsets S of the b-element set of bins, by lumping registration 
in any bin belonging to S into "yes," registration not within S into "no." 

A fit in MF with n • n matrices which commute is classical, with an 
n-bin universal test if there is a repertory (Section 11). U. U -  ~ diagonalize 
all the matrices simultaneously. T r P A  becomes Y~'~=1PiAi in terms of the 

n p~..~ diagonal elements Pi and A i. T r P =  1 becomes ~i=1 t 1. Nonnegativity 
becomes nonnegativity of the diagonal elements. Each state P is a convex 
combination of the n pure states where a single diagonal element is 1. The 
sharp questions (E, I - E )  of Section 10.1 are given by stating which subset 
of the diagonal corresponds to the " l ' s "  of E. The n one-dimensional 
projections are the n acceptors of the universal test. 

If a repertory is unavailable, the convex body of available states may 
be smaller than the simplex generated by the n one-dimensional projec- 
tions above, and there may also be a restriction of the convex body of 
questions. A commutative fit is classical nevertheless in the sense (von 
Neumann, 1955) that empirically unattainable pure states and sharp ques- 
tions may be postulated within n by n MF without enlarging n, where the 
T r P A  taken between the pure states and the acceptors of the sharp 
questions are all 0 or 1. All nontrivial probabilities look like those gener- 
ated by convex combination in the manner of "rouletting" (Section 10). 

B l o c  F o r m a t ,  B F .  CF is an extreme case of BF(n l . . . .  ,ns), MF re- 
stricted to matrices in diagonal block form, nonzero elements in n I by 
n 1 . . . . .  n s by n s nonoverlapping diagonal blocs, n I + . . .  + n s = n ,  namely, 
CF=BF(1  . . . . .  1). BF is equivalent to superselection rules: superobserv- 
ables commute, hence can be simultaneously diagonalized, leading to BF, 
and conversely the BF bloc projectors are superobservables. 

N o n c o n j u g a t e  Cous ins .  In BF, hence CF, and in RF, states and tests 
are specialized from MF in having zeros in certain places. If the zeros 
condition is lifted from either state matrices alone, or from test matrices 
alone, the TrPA's are unchanged, hence the logic is invariant to such 
partial format repeal. If there are enough states P, for example, a unitary 
or antiunitary conjugation leaving all P fixed would be the identity, and so 
such partial repeal (here for the tests) goes beyond ordinary conjugation. 
Thus an MF computation on a BF-, CF-, or RF-compatible logic is likely 
to find some nonconjugate cousin, not simply a conjugate, of a BF, CF, 
RF solution. Specializations will be seen most clearly in computations 
restricted a priori. This comment neglects the inequalities of nonnegativity 
of MF, which if there are enough states and tests can  lock the arbitrariness 
down to conjugations: Section 11. 
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9.3. The Size n of the Matrices. The larger n, the more unknown 
parameters are available to fit the data with n • n MF. Precisely how many 
MF logics are there, for given n? That  is, determine the real dimension 
d(n) of the manifold of functions (i, j ,  k)--+Pijk generated by TrPiAjk =Puk" 

Theorem 2: Matrix Logic Dimension Theorem. 

t 

d(n) = (n 2 - 1)(s - 1) + n 2 ~, (bj - 1) 
j = l  

Proof Of the relevant matrices I; P1 . . . . .  P~; All . . . .  ,Alb,; ". . ;  
At~ . . . .  ,Atb,, I is known, the state matrices Pi each provide nZ-1 un- 
knowns, not n 2, as their traces are known; and of the bj acceptors of test j ,  
bj-1 of them completely fix the remaining one, and have n z unknowns 
apiece; nonnegativity does not figure in a dimension count. This so far 
provides a count of (n 2 -  1)s + nZE~=l(bj- 1) unknowns for the real dimen- 
sionality of the family of lists of matrices which fulfill MF for arbitraryp,jk. 
From this must be subtracted n 2 -  1, the dimensionality of SU(n), because 
SU(n) mod its center is one of the two components of the least (Section 11 
or Appendix C) effective group of transformations of the matrices under 
which a logic remains invariant. I 

Remark. Dimension Jump. 

d(n + 1) - a(n) = (2n + 1)m 

where 

t 

m = s - l +  2 (bj- l) 
j = l  

measures the increase in the dimensionality of the logics made available by 
stepping n--~n 4- 1. The number of independent states and bins is m + 1; m 
is independent of n. 

Given the problem of fitting empirically determined Puk, a "solution" 
can likely be found by taking n sufficiently large. For example, if n 2 > m + 
2, the condition that all m + 2 matrices (counting I )  considered as vectors 
(Section 12) lie in a common n2-dimensional vector space, becomes vacu- 
ous. Does this indicate that after all "quantum logic" is tautologic, or 
vacuous? 

The situation in physics indicates otherwise. 
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The most satisfactory sort of solution would be rigid or unique, in the 
sense that only conjugations in MF or orthogonal transformations in the 
DF's (Section 12) would preserve the fit. However, the jump by the large 
number (2n + 1)m of parameters available for fitting data is most likely to 
lead from some n where no good fit has been found, to the next size n + 1, 
where a fit not only is possible but also is highly nonrigid. So a good rigid 
fit is implausible, as an accident. Rigidity in itself provides some signifi- 
cance. 

A nonfortuitous quantum logic fit may also have some nonrigidity, 
perhaps associated with superselection rules, if there is a deficiency of 
states and tests. But as m is enlarged within the same qualitative "domain 
of empiricism," a true quantum logic would rigidify, except possibly for 
superselection rules not transcended by the empiricism, in its proper n, and 
would stay reasonable in the same n, while new techniques increase m 
beyond where a fortuitous fit is plausible. 

For much larger n, a classically logical fit should be possible, com- 
prised within MF (Section 10.2). The dimensionality dclassical(n ) of the 
classical logics within n • n MF is easily calculated by requiting that the 
matrices be diagonal: CF. Then a density matrix provides n - 1  free 
parameters, an acceptor n free parameters. There are now 

t 

dc,assi~al(n ) = (n - 1)s + n ~, (bj - 1) 
j = l  

free parameters to fit the empirical probabilities, with no effective altera- 
tion of the parameters leaving the logic unchanged. 

The likelihood of fitting measured Pok by very many parameters should 
make some CF fit inevitable. So if quantum logic is not tried, it may not be 
missed. 

10. STRUCTURE OF THE TESTS 

Because of the formal presentation of MF in MB (Lubkin, 1974a, b), I 
feel free to discuss the sense of that work here more flexibly. 

10.1. Rouletting vs. the Register Method. My states are the well- 
known density matrices of Landau (1927), von Neumann (1927, also 1955, 
Section IV.2, footnote 172), and Weyl (1928), but my tests are somewhat 
novel  s To motivate this new look at tests, recall how wave functions were 
generalized to density matrices. Indeed, this happened in two distinct ways. 

5R. Giles (1970) independently generalized the 2-tests. 
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The first way, which I call rouletting of states, came about because it 
was desired that a procedure in which a random process like spinning a 
roulette wheel begins the procedure, with the outcome of this random 
process then designating which of several possible subsequent state prep- 
arations will ensue, should also be regarded in its entirety as a single 
legitimate procedure for preparing a state. This requirement, that the set of 
states be complete under rouletting, amounts to convex completion of the 
logics Pok on the state index i. Of course the main historical motive for this 
completion was the incorporation of statistical ensembles into quantum 
mechanics; but an incidental advantage is that procedures can be legal 
preparations of states even before one can argue which among them 
prepare pure states. 

The most evident parallel lesson concerning the tests here would be to 
study the rouletting of test procedures, i.e., of the logics on the test inde• 
but this does not quite lead to MF, which is simpler and more general. 

The second way in which wave functions lead to density matrices 
comes from the desire to focus attention on a subsystem: The density 
matrix Pi, i2, j l j  2 for a compound system is replaced by Pi,,jl = Y'i2=j2P~,i2,j,j2 �9 
The partial trace performed over the 2-associated indices represents the 
focusing of attention upon system 1. This is the Landau tracing already 
mentioned in Section 6.3, a topic I find fascinating (Lubkin, 1978, 1979). 
Even when P is a pure state, the subsystem's representative matrix p is 
usually a mixture. Thus, in quantum mechanics, the intent to ignore any 
part of a state has the power of mimicking the straightforward introduction 
of probabilities by means of rouletting. 

It is by consideration of a multisystem complex in analogy to the 
system 1, system 2 context of Landau tracing that I arrive at MF by what I 
will call the register method. 

In conventional quantum mechanics, the state P is cordronted by 
some observable, a normal or Hermitian operator Y, with outcomes 
corresponding to distinct eigenvalues Yl . . . . .  Yb of Y (Wigner 1952, Lubkin 
1979). The probability pk of the kth outcome yk is Pk =TrPEk,  where E k is 
Hermitian projection on the eigenspace yk (Y)  of Y corresponding to 
eigenvalue Yk. E = (E 1 . . . . .  Eb) is a b-plex (Section 9.1) of special form, its 
coordinates E k being mutually orthogonal projections. I call such b-plexes 
sharp. Because the conventional Dirac (1947) or von Neumann (1955) 
observables correspond to sharp b-plexes, I call them sharp tests. 

The generalization of these conventional sharp tests by the register 
method goes as follows. System 1 is the system of interest associated with 
n-dimensional Hilbert space, prepared in some state with density matrix p. 
System 2, the register, is associated with a b-dimensional Hilbert space, 
and is prepared in an initial pure state e I. The overall initial state is then 
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P =p  | e I. Then the system 1,2 complex, a system whose state is associated 
with the nb-dimensional tensor-product Hilbert space, is made to undergo 
some  unitary motion U, leading to new overall state U P U  - I =  Up|  
e I U - 1. Finally, the observer collects an outcome by observing the register, 
asking impulsively in which of the orthogonal register pure states e 1 . . . . .  e b 
it is. Thus, the experiment has b possible outcomes, and the probability of 
the kth outcome is p~ = T r  Up|  e 1 U - 1 1 |  k. Were we to regard the whole 
story up to developing U P U  -1 as the preparation of a state of  the 
system-register complex, this queried by the sharp final b-test with b-plex 
( l |  I . . . . .  l |  we would evidently not be leaving the domain of 
ordinary, sharp observables. We wish instead to regard this as the prepara- 
tion of state p of  the system of  interest alone, followed by subsequent 
procedures which are all to be reckoned as part of a test with b outcomes 
also performed upon the system of interest alone, in that the probabilities 
are to be calculated by means of a formula of form p ~ = T r p a  k from a 
b-plex a of b acceptors a I . . . . .  ab, Hermitian operators or n •  matrices 
defined over system-1 Hilbert space. The coupling with the register and the 
U. U-1 motion are to be reckoned as part of the test, not the state, and the 
register is laboratory equipment outside of the Hilbert-space story, b-plex a 
depends on the motion U, and in such a way that, as U runs over all nb by 
nb unitaries, a runs over all n • n b plexes. (The verification is in MB.) 

Because this register method of doing an experiment can reach any 
b-test, it follows that the traditional observables, whose b-plexes are sharp, 
correspond to a restricted class of tests: such as may be considered 
determinations of eigenvalues of observables. Hence, in an investigation 
wherein the states and tests are explained as procedures not known to be 
related to the Dirac or von Neumann observables of a mechanical theory, 
it would be presumptuous to require that the probabilities be fitted with 
sharp b-plexes for b-tests, rather than by the more general b-plexes. 

Let us return to rouletting tests: If we start with several sharp b-tests, 
with sharp b-plex E r = ( E ( , . . . , E ~ )  for b-test r, then the rouletted b-test 
performed by selecting b-test r with probability Pr will have b-plex A = 
(A 1 . . . .  ,Ab) with A k = E p r E  [, and will not usually be sharp. We may write 
A =Y~p~E r. A is a convex combination of the E r. For  example, let a 
conventional atomic system have energy values h~,h2,h 3 . . . .  and total 
angular momentum valuesjl ,J2,J3, . . . ,  and let the experiment be, to toss a 
coin, and measure energy if the coin comes up heads but angular momen- 
tum if tails, and nevertheless to simply record outcome k ff either, in the 
case energy is measured, the value: obtained is h k, or if angular momentum 
is measured, the value obtained isjk: here two sharp observables are being 
convexly combined. Such rouletting shows us, perhaps more easily than 
the register method, that the observable of conventional quantum 
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mechanics should be generalized. The register method is, however, more 
powerful, because rouletting fails to generate the set of all b-plexes from 
the sharp ones, when b/> 3 (see MB). Those b-plexes that may be generated 
by convex combination of the sharp ones, I call undersharp. 

The rouletting together of sharp tests is a test analog of the rouletting 
or convex combination or mixture of states, and the register method is a 
test analog of Landau tracing--because as in Landau tracing, there is a 
system 2 with subordinate status, the state p and the b-test a relerring only 
to the n • n system 1 of interest. The fact that the b-plexes representing 
b-tests with b >/3 attained by the register method are more  general  than the 
undersharp b-plexes attained by rouletting sharp b-tests, is a fact about 
tests that stands in contrast to the fact about states, namely, the develop- 
ment of the s a m e  state density matrices by Landau tracing from an 
enveloping pure state as by the rouletting of pure states of the system of 
interest. 

Are the b-plexes a sufficient generalization of the traditional observ- 
ables? It is easy to see that this is so (MB) if the probabilities of outcomes 
are to depend linearly on the von Neumann density matrix of the state: 
For b-plex A = (A 1 . . . . .  Ab), the condition Y~A k = 1 is imposed by normaliza- 
tion of the probabilities, A k Hermitian by their reality, A k >>. 0 by their 
nonnegativity. 

It might be expected--perhaps from a feeling for symmetry between 
past and future-- that  just as "in" states, our states, become density 
matrices upon convex completion, never mind b-plexes: tests considered as 
"out" states should also become density matrices. They do not. The lack of 
in, out symmetry is familiar in treating the unpolarized condition in 
nuclear physics: at the "in" end one averages, while at the "out" end one 
sums.  This asymmetry is exploited in determining some spins from others 
without using polarization experiments, by comparing cross sections for 
inverse processes (e.g., Frazer, 1966). This is not to deny that outcomes of 
tests can help Prepare states: e.g., see Section 10.4. 

10.2. Convexity. The story of convex combination of sharp b-plexes, 
parallel to the laboratory procedure of rouletting sharp b-tests, of course 
need not be restricted to sharp tests; under unrestricted convex combina- 
tion, the b-plexes of n • n matrices form a convex body for each b, n. In the 
norm topology wherein the norm of a b-plex is the sum of the absolute 
squares of all the matrix dements of all b matrices, the body is also 
compact .  Hence it is the convex completion of its set of extreme points, and 
it is natural to seek information about the extreme points. It is easily 
shown (MB) that all sharp b-plexes are extreme. The undersharp b-plexes 

"of course comprise the convex body generated from the sharp b-plexes (for 
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each n); equivalently, the convex body generated by the commutative 
b-plexes (those whose b matrices commute), and the statement that (for 
b/> 3) there are yet other b-plexes is equivalent to the existence of nonsharp 
extreme b-plexes. This is done in MB by determining all extreme b-plexes 
of 2 by 2 matrices, b = 1 is of course the uninteresting degenerate case with 
only one 1-plex (1), necessarily extreme. For  b = 2, the extreme 2-plexes are 
the sharp 2-plexes (P,Q) .  Among these, those where r a n k P = r a n k Q =  1, 
specify the extreme 2-plexes with no zero matrices, b-plexes without zero 
matrices will be called O-free; the (b + 1)-plexes, (b +2)-plexes . . . .  obtained 
by listing extra zero matrices are all extreme if and only if the 0-free core 
obtained by omitting zero matrices is itself extreme. The extraneous ex- 
treme 0-free b-plexes of 2 •  matrices are the following 3-plexes and 
4-plexes. Each acceptor is a 2 •  Hermitian matrix of form laII+a.a,  
where tr are the three Pauli matrices and a is a real 3-vector, hence the 
acceptor can be tagged in terms of its real 3-vector a. The extraneous 
extreme 0-free 3-plexes correspond to vectors ai,a2,a 3 which form a 
triangle of unit perimeter and nonzero area, and the extraneous extreme 
0-free 4-plexes to a 1, a 2, a3, a4, which form a nonplanar quadrilateral of unit 
perimeter. These triangles and quadrilaterals are noncommutative. There is 
no extraneous 2-plex for any n. Construction of extraneous b-plexes for 
b ~ 3 for n > 2 by building upon the n -- 2 example is easily done. 

These results of MB were obtained in part with the help of two 
notions of reducibility, which I called segmentation and 1-elimination. A 
b-plex irreducible in both senses would be 1-free, namely, none of its 
acceptors would have 1 as an eigenvalue, and also no nontrivial sum of 
some of its acceptors would be a projection. The complete reduction of a 
general b-plex is obtained by first making a unitary conjugation of all the 
matrices so as to bring all 1 eigenvalues into one bloc, say at upper left, 
which bloc becomes a sharp direct factor; call the bloc projector E ~ The 
complementary lower-right bloc yields a unique finest segmentation, 
namely, a list of Hermitian projections E l . . . . .  E s (s segments, s/> 0) such 
that some of the lower-right matrices add up to E 1, some others to E 2 . . . . .  
the rest to E s, with E l +  . - .  + E ~ being the lower-right-bloc unit matrix, 
i.e., projection on lower-right space. Unitarily conjugate to diagonalize 
E I . . . . .  E ", to complete the reduction. A list of b nonnegative Hermitians 
which sum to projection E is a (b, E)-plex. The complete reduction de- 
scribed yields a possible upper-left sharp (b, E~ then a (b, E l)-plex, 
a (b, E2)-plex, etc., each latter irreducible in both senses, racked together as 
a direct sum. The whole thing is extreme if and only if each irreducible 
ingredient b-plex is itself extreme. 

Both of the above notions of reducibility of MB are special cases of 
the more conventional (unitary) reducibility, wherein if a set of matrices is 



554 Lul~kia 

brought by unitary conjugation into bloc form, that counts as a reduction 
without further ado. Indeed the sum of the b matrices of each bloc comes 
out the bloc projection operator, with those for distinct blocs orthogonal, 
but unlike the more special notion of segmentability, it is not required that 
each whole original matrix contribute to only one segment bloc. I have 
unfortunately not been able to either prove or disprove the conjecture that 
this less specialized notion of reducibility also has the property that a 
complete reduction is extreme if  each irreducible component is extreme: That 
the composite is not extreme if a component is not, is shown by using the 
convex combination which displays the nonextremity of the component 
given nonextreme, with the other components unvaried. 

I have been able to shift the essence of the matter away from the topic 
of convexity to something more purely algebraic: Let E v be orthogonal 
projection on subspace V of finite-dimensional Hilbert space 0C. The set of 
operators of form E v M E  V, as M runs over all linear operators on ~ ,  is a 
vector space of dimension (dim V) 2 which I call the quadratic space Q ( V )  
of  V. A list of subspaces of 9C, or the corresponding list of projections, is 
quadratically independent if the corresponding quadratic spaces are linearly 
independent. Then the truth of the following proposition would prove my 
above conjecture about reducibility: Let  E l . . . . .  E b and F 1 . . . .  , F  b each be 
a quadratically independent list of  projections. Let  E l + . . .  + E  b= E, let 
F l + . . .  + F b = F, and let E , F  be quadratically independent. Then (conjec- 
ture) E m + F 1 . . . . .  E b + F b is also quadratically independent. 

For a list of two items, the condition of quadratic independence is 
equivalent to linear independence, which is therefore implied for E, F; yet 
it is amusing that it can be worded all in terms of quadratic independence. 
Indeed, it can be shown that, although the quadratic space Q ( V )  varies for 
fixed V as the inner product in ~ is varied via alternative nonsingular 
Hermitian forms, the quadratic independence of a list of spaces is invariant 
with respect to choice of inner product. Therefore, although the proposi- 
tion appears to depend upon choice of inner product, it does not in fact do 
so if restated in terms of spaces rather than projections. It is really about 
vector spaces, not Hilbert spaces. Perhaps this generality will encourage 
interest. 

10.3. Lattices and Logics. The lattice-theoretic approach to quantum 
logics (Birkhoff and yon Neumann, 1936; Jauch, 1968; von Neumann, 
1955, p. 247) deals with the sharp questions: A question or 2-plex ( A , B ) ,  
A + B -- I, A ~, 0, B >/0 may be represented by its first matrix A, 0 <A <1. 
It is sharp if and only if A is a projection. The sharp questions' projections 
A are one-one with the subspaces of n-dimensional Hilbert space. These 
form a lattice under inclusion of subspaces, with set-theoretic intersection 
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as meet and linear envelope of set theoretic union as join. Partial analogy 
with "and"  and "or" in Boolean logic helps motivate the term "quantum 
logic." My use of "quantum logic" departs from this chiefly because my 
tests are more general than sharp questions. 

Remark." A Metaphysical Advantage of Mixture (Lubkin, 1976). The 
lattice of sharp questions for the quantum logic of n •  n matrices is 
disconnected into n +  1 components: Questions ( A , I - A )  has dimension 
dim 1(14) which ranges over 0, 1 . . . . .  n (and appropriately varying unitary 
conjugation does connect d-dimensional A to standard diagonal form). 
Similarly for the sharp b-tests even if b > 2: (A ~ . . . . .  Ab) maps to a dimen- 
sion-tuple component label (d I . . . . .  db) with d l + . . .  +db=n and d,.- 
dimAi. 

Perhaps physical tests should not be so formally disconnected owing to 
the format of quantum logic alone. This worry may have spurred von 
Neumann's interest in continuous geometry free of a discrete dimension 
function (1962), aside from the issue of "modularity." However, the convex 
body of all b-plexes, b and n fixed, is of course connected! And it is 
impossible to decide without trials whether some test is (approximately) 
extreme; this quality emerges only in a calculated fit of many state-test 
trial probabilities, together. So interpolating from one sharp test to another 
of different dimension structure through mixtures physically bridges the 
dimension gaps, even if no explicit recourse to a roulette wheel is allowed. 
Ordinary Hilbert-space based physics is connected regardless of the dis- 
creteness of ordinary dimension. 

10.4. Undersharpness. The main reason why the extraneous tests and 
mixed tests have been neglected is that it is enough to apply sharp tests, 
indeed sharp 2-tests, to define the states empirically: people have sought 
the simplest tests, indeed mainly those corresponding to Hermitian-observ- 
able conserved quantities, in order to get most directly at the states. The 
register method nevertheless shows how to achieve the most general tests. 
Between these extremes there are the undersharp tests, those which can be 
produced from the sharp tests by rouletting alone. More generally, what 
circumstances will guarantee undersharpness? I quote some undersharp- 
ness theorems from MB, then go more fully into some details omitted from 
that account. 

The fusion of bins, that is the combining of counts from two or more 
outcomes originally reckoned as distinct into a single outcome, preserves 
undersharpness. 

If the sum of the maximum eigenvalues of all but one of the acceptors 
of a b-plex is no greater than 1, then the b-plex is undersharp: crudely, a 
situation dominated by one beam dump bin is not a way to achieve an 
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extraneous test. This provides a solid undersharp portion of the body of all 
b-plexes, hence the undersharp b-plexes and the general b-plexes of n • n 
matrices share the same dimension, (b - 1)n 2. 

So far, the tests could be destructive, a trial leaving only a count in a 
bin and no final state at all. Knowledge gained by applying such possibly 
destructive tests, that a certain procedure does indeed produce a particular 
"final" state P, is nevertheless Useful in that the state-forming procedure 
can be carried out anew short of destruction, in order to provide P for 
some other purpose. 

By a filtration bin I mean a test bin of this sort which also serves up a 
final state in the usual quantum-mechanical fashion: After normalized 
initial vector state x registers in a bin whose acceptor is projection E, the 
output state is proportional to Ex. The density matrix for this, unnormal- 
ized, is IEx><ExI=P'=EIx><xlE=EPE, where I x ) ( x l = e  is the prior 
state. TrEPE= ( E x [ E x )  is the probability of E-registering, so the reduced 
normalization is correct for a new "state" matrix P '  which will yield the 
expected number of counts into a subsequent bin with acceptor A when 
substituted into the formula N T r P ' A ,  where N is the number of trials 
prior to the E selection, if a "success" involves both E selection and 
subsequent A acceptance. 

If instead of one projection E, there is a sharp b-test (E 1 . . . . .  Eb) 
composed entirely of E i which in this way pass on the state, then the final 
counts into a subsequent bin with acceptor A is N T r P ' A ,  where P ' -  
Y.~,IEiPEi, and TrP'---1.  This delicate sort of nondestructive sharp test 
(E  l . . . . .  Eb) is afiltration through all bins, and the process P---~P' on states 
induced by such a filtration is von Neumann's  "process of measurement." 
Rouletting states of course generalizes the Y~EiPE i formula (von Neumann, 
1955) to mixed states P. Production of a correlated system-observer state 
NaiXyo~Y.aixy  ~ followed by Landau tracing over the observer space 
(Lubkin, 1979) produces the same result. 

Theorem 3: Bifurcation Theorem. If the bth bin of sharp b-test 
(A l . . . . .  Ab) outputs in the manner of a filtration, and if this bin is 
subjected to bifurcation by application of further filtration accord- 
ing to projections E, F, EF= O, E + F= I, E leading to a new bth 
bin and F to a ( b +  1)st bin, then the resulting (b +  1)-plex is 
(A 1 . . . . .  AbEAb,AbFAb), sharp if AbE= EA b, undersharp generally. 

Proof The output from the original bth bin is P ' = Ab PA b, if P is the 
original state, for subsequent use in computing the probabilities of final 
bth bin counts, TrP 'E ,  and final ( b + l ) s t  bin counts, TrP'F .  These 
probabilities are therefore TrAbPAbE and TrAbPAbF. These can be cycled 
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t t t into form TrPAb, TrPA;,+I , with Ab=AbEAb, Ab+I-AbFA b. The other 
acceptors are unchanged. 

The (b+ 1)-plex thus established is sharp if AbE=EAb: It is easily 
verified that each A a . . . . .  Ab_l, AbEA b, AbFA b squares to itself, that the 
product of any two is 0, and that they add to I. 

It is a little more difficult to argue undersharpness when AbEsaEAb. 
Consider the subspace Im Ab, A b being a projection because the 

original b-plex is given sharp. In this subspace, (AbEAb,AbFAb) is a 2-plex, 
A b being the appropriate unit matrix. Since every 2-plex is undersharp, 
there exist coefficients Pi >0  with Y~Pi--1 and sharp 2-plexes (Ei,F,.) with 
Eil:;'i=O, Ei+ Fi=Ab, such that (AbEAb,AbFAb)=(~.~iEi, Y..~iF,. ). Then 
(A 1 ... . .  Ab- 1, AbEAb, AbFAb) = y" avi( A 1 ..... Ab- l, El, Fi), presents the bifur- 
cated (b + 1)-plex as a convex combination of sharp (b + 1)-plexes. [] 

Theorem 4: Bifurcation of an Undersharp Test. Suppose several 
sharp b-tests, (A~ . . . . .  Abk), each giving rise to a (b+l)-plex by 
means of (E, F) bifurcation as above of the bth bin, with the whole 
procedure rouletted with probabilities p k: these are written with 
superscripts to emphasize that they are not the Pi of the last 
argument. Then the resulting (b + 1)-plex is 

(Epk, , ..... EpkAL1, Ep A FA ) 

and is undersharp. If the rouletted b-plex prior to bifurcation is 
denoted (A 1 . . . . .  Ab), then this resulting (b + 1)-plex cannot in gen- 
eral be computed from A 1 ... . .  Ab,E,F. alone, not even if A b com- 
mutes with E; the rouletting itself must be given, as above. 

Furthermore, if E is 1-dimensional, and if the undersharp 
b-plex is physically produced as a specific rouletting of sharp 
b-plexes, not only is the final (b + 1)-plex determined, but also the 
manner in which it is rouletted from sharp (b + 1)-plexes. 

Proof The resulting overall (b + 1)-plex is obvious. It is undersharp, 
because it is a convex combination of (b + 1)-plexes known to be under- 
sharp from Theorem 3. 

That the result cannot be expressed in terms of the A i =ZkPkA~ and 
E, F alone is indicated by the difficulty of bringing both Aft together in 
Et, pkA~EA~. Could this be done, say, if EAbk=A~E, then the expression 
would collapse to AbE (and the F term would collapse to AbF ). But if only 
EAb=AbE is given, commutativity with E is not known for each Ab ~ 
separately. 
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To prove that this is not merely algebraic clumsiness but that the 
pk,A~ must indeed be separately given, an example is presented wherein 
two different roulettings which produce the same undersharp 2-plex of 
2 • 2 matrices though subjected to the same (E, F) bifurcation yet produce 
distinct 3-plexes. 

The 2-plex is 

0 

Both bins happen to have the same acceptor. Bin 2 is to be bifurcated into 
new bins 2 and 3, using 

o~ F Co o) 
E = ( 0  01' =~0  

and two different roulettings. 
The first rouletting is 

o]l :  ((Oo o)) 
l o/,(oo ~ 

The new acceptor for bin 2 is 

oo  (~00) _1 0)(1 0]+1/1 0)(~ 1)(0 ~)-- 0 ~(1 oo)(0 
Thus the final 3-plex is 

,0 : t (  ~ , 0  

The second rouletting is 

11 o o l ]I i i l l  i l 1 i , (i i!I 

1 ~ - ~  
I l + '~  , --~ 
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The new acceptor for bin 2 is 

I 11 1 ~ 0 ~ 
I 0 1 l 2 ~ ~ 

1 ~ - g  
1 I 

This second rouletting gives final 3-plex 

0 )  21 - -  = ~ 0 
0 - 5  0 

distinct from the result from the first rouletting. 
Observe that in this example, counter to the suggest'ion that bifurca- 

tion be independent of the rouletting, the acceptor A b of the bin split 
commutes  w i th  E .  

Finally, the inductive succession of roulettings when E is one dimen- 

sional, is argued: AbEAb,  being of rank no greater than E, is itself 
proportional to a one-dimensional projection E' :  AbEA b = p E ' ,  0 < p  < 1. 

Then, ( A b E A b , A b F A b ) = ( p E ' , A b - - P E ' ) .  This is to be written as a convex 
combination of 2-plexes (Ei, F,.) with E i + F,. = Ab, and coefficients of con- 
vex combination Pi >0,  ~,pi= 1. In particular, Y . p i E i = p E ' .  This puts p E '  

internal to the simplex generated by the E r But p E '  lies on an extreme ray 
(Appendix B), hence is internal only to one-dimensional simplexes. Hence 
each E~ is either E '  or 0: we are past worrying about noncommutativity. 
Thus, Y,p~E~=(pl  + . . . + p r ) E '  +(q~ + . . . + qz)O w i t h  p l  + . . . + p r = p  and  
ql + " "  + qz = 1 - p .  The rouletting coefficients are p~ . . . . .  Pr, ql . . . . .  qz, the 
p's being associated with sharp question ( E ' , A b - E ' )  and the q's with 
sharp question (O, Ab). 

In Theorem 4, the resulting (b + 1)-plex is independent of the roulet- 
ring prior to bifurcation, to the extent that if the A ~ E A ~  coincide for 
several index values k, the p k prefixing such terms may be added, to 
produce a single term. Consequently, the roulettings provided above are 
sufficiently unique to define a subsequent bifurcation in the manner of 
Theorem 4. 

If instead of starting as in Theorem 3 with an originally sharp b-plex, 
we are given an originally undersharp b-plex but with a specific rouletting, 
then the sharp terms may be bifurcated by a one-dimensional E as above, 
with a particular rouletting for each such term, these roulettings then 
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rouletted with the originally given coefficients of rouletting, to produce an 
undersharp result equipped with a specific rouletting. �9 

The Concatenated Thin-Target Thick-Target Model Here undersharp- 
ness through iteration of Theorem 4 is made vivid. 

A particle, prepared in state P, is sent through a thick target, con- 
veniently taken as so thick that the particle never gets through: If there is a 
beam dump, let that be considered as replaced by an opaque succession of 
further thin layers, subsequently fused. The thick target is supposed to 
operate as if it were a sandwich of "thin" targets, at each one of which the 
particle is either stopped, or gets through. If the particle is stopped, some 
record or signature is left of which thin level stopped it. These signatures 
are the bins. The projector E for a single thin level is required furthermore 
to be one-dimensional. 

In an actual thick target, there are many signatures possible within 
one "thin" layer. For example, the layer may be separated in the two 
dimensions transverse to the beam direction into zones, with specification 
of the zone wherein the particle has stopped. In each zone, the stoppage 
may be at any of several chemical species of stopping target particle, 
subsequently identifiable. But each zone is to be regarded as successively 
presented to the beam, each chemical population also as successively 
presented. The idea that presentation of one actual thin layer may be 
represented by the successive presentation of a large set of simpler thin 
layers for which stoppage or no is only a 2-test, is a denial of any 
shadowing effects of one population by another within a thin layer. 

The propagation of the particle to thickness t may be represented by 
replacement of the incident state P by U(t)P(U(t)) -1, where U(t) is an 
appropriate unitary operator. However, since Tr U(t)P(U(t))-1A=Tr 
P(U(t))-IAU(t), it is possible to preserve the format where the incident 
state is simply P, and the actual acceptors at thickness t are U-~.U 
transforms of "local" acceptors. It is the already transformed matrices, the 
ones that work with P directly, which are appropriate to the TrPA format: 
Any unitary propagation is already implicitly included in the foregoing 
discussion. This is a sort of "Heisenberg picture." 

Since the bins have been obtained by successive bifurcation--the 
conditions of filtration of course being assumed--the theorem concerning 
bifurcation applies, and the test is undersharp. "Calculation of each succes- 
sive bifurcation provides the rouletting needed for calculation of the next 
succeeding bifurcation, owing to the assumption that the thin slicing of the 
target could conceptually be taken down to one-dimensional projections E. 
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Comment on the Nonuniqueness of Bifurcation. Just as a density matrix 
P represents all that matters for that aspect of a state needed to determine 
its response to a test, and not any other details concerning the manner in 
which the state may have been prepared from an antecedent state, so the 
b-plex (A 1 . . . . .  Ab) represents all that matters for that aspect of a test 
needed to determine its response to a state, and not anything concerning 
subsequent tests. In the language of linear time: Density matrices transmit 
what is important to the future, acceptance matrices work on what is 
incident from the past. The "nebd to know more than the incident density 
matrix P, the acceptors A~ . . . . .  A b of the b-test, and the nature (E, F )  of the 
bifurcation of the bth bin, in order to calculate the b + 1 new acceptors, 
illustrates the failure of extrapolation of a (state, test) experiment beyond 
its test to a further test, without the help of extra information. 

The particular rouletting by which the undersharp b-test (A1,...,Ab) 
was constructed from sharp b-tests (A ~ . . . . .  Ak), was sufficient extra infor- 
mation. 

It is perhaps disconcerting that this is no help in bifurcating an 
extraneous test, although we could try to force the issue as follows. Any 
b-plex can be written as a barycentric combination of sharp tests, that is, a 
combination using real coefficients which sum to 1, but which may be 
negative. It is easy to suggest that bifurcation be defined for extraneous 
tests by specifying a barycentric decomposition into sharp tests. I have not 
studied how to manage such a rule so as to keep to nonnegative matrices. 
If some barycentric extension is, however, taken up, then uniqueness of 
bifurcation could be lost even for sharp tests: Even a sharp test can be 

wr i t ten  in many ways as a barycentric combination of other sharp tests. 

10.5 Luxuries. It is important to recognize that the above questions 
about filtrations and bifurcations are outside the basic domain of discourse 
here. They need not be resolved. Even a test that destroys the 
s ta te--meaning one for which bins make sense but the question of what 
state is left after the kth bin has responded does no t - - i s  reasonable and 
useful in MF. 

Recall that MF  only seeks matrices P,A so that measured frequencies 
of activation of the bin to which A must be associated when the test is fed 
by the procedure that produces the state to which P must be associated, 
will be fitted by Tr  PA, preferably with n small. A procedure defining a 
state may involve earlier stages which constitute the procedure for produc- 
ing another state, followed by the laboratory procedure leading to b 
channels which are otherwise considered b bins of a test, requiring that the 
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kth channel be activated, perhaps following this record of activation by 
further procedures, prior to the application of some test. (States produced 
without being tested are wasted!) Although the foregoing story mitigates 
the harsh simplicity of "state meets test," that simplicity is basic. MF is 
itself already sufficiently defined that in finding all solutions for P's and 
A's to fit Tr PA's to the measured probabilities, one either gets no 
solutions, a reasonably unique solution, or an annoying plethora of solu- 
tions, without any theory of bifurcation, for example. In the event of a 
unique solution, we can read off which tests "are extraneous, the behavior 
of anything, even extraneous things, under bifurcation, etc. 

It is of course possible to seek to tighten MF, if the general format 
lead to too many solutions, by guessing that some states are pure, some 
tests sharp, and that other tests are concocted by an impulsive bifurcative 
succession of sharp tests, injecting such requirements a priori as constraints 
on the matrices. Taken together with the undersharpness theorems, such 
assumptions could render an overall constraint of tests to undersharpness 
plausible. Or such assumptions could be imposed on some states and tests 
with others regarded out of bounds for assumptions, with some such tests 
coming out extraneous. 

Another similarly optional luxury would be a requirement that a 
certain state be the tensor product of two others, or that the density 
matrices for a certain class of states be of form P = I |  while those of 
another class of states be of form P"|  with yet others of form P"|  
and still others of general form. Bose and Fermi statistics could also be 
tried. 

The propagation of states in time by Hamiltonians, or with entropy 
increase, or entropy decrease, are also luxuries: Whether a sequence of 
states differing only in a coasting time parameter are related through 
unitary conjugation generated by a Hamiltonian, or otherwise, could be 
seen by examining the output state matrices without imposing any prior 
model of motion. Canonical formalism is at best a luxury, perhaps an 
encumbrance--an expensive luxury, rendering n infinite. 

The possible power of the bare Tr PA format without luxuries will 
hopefully make experimenters eager to gather data for fitting MF Without 
first worrying about theories of the luxuries. 

A filling-in of the bare format which would reveal some of these 
conventional structures of ordinary quantum physics approximately, would 
be more convincing than one obtained by imposing luxuries as constraints 
of the format. A statistically good small-n fit entirely devoid of any of the 
usual interrelationships, could be a startling proof of the power of quan- 
tum logic, a new sort of tight "factor-analytic" parametrization of some 
empirical domain, which might yet be puzzling to reduce to new insights. 
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I should again temper enthusiasm for bare MF by cautioning that 
there will usually be too many parameters to fit. A priori constraints of 
course reduce the number of parameters. 

11. REPERTORIES 

The following results of MB show that the probability data input to 
M F  can suffice to fix a unique solution, of course modulo unitary and 
antiunitary conjugation, admittedly in a very simple class of cases. 

Lemma 1: Trace Lemma(MB). b-plex (A 1 . . . . .  Ab) is sharp if and 
only if it is trace-orthogonal, that is, Tr  AiA j = 0 for all i v~j. 

A sharp test all of whose acceptors are one-dimensional projections, 
equivalently a sharp n-plex none of whose matrices is 0, is a complete test. 
This is the one-observable case of Dirac's complete set of commuting 
observables. A list (Pl . . . . .  Pn) of n states and an n-test (A l . . . . .  An), with Tr  
PiAJ = gO" will be called a repertory. 

Theorem 5: Repertory Theorem (MB). The n-plex (A 1 . . . . .  Ab) of a 
repertory is a complete test, and Pi =Ai. 

The values of Tr PiA/ are measurable given the procedures for 
preparing the Pi and for effecting the test (A l . . . . .  A,). The fact Tr PiAj = 8ij 
is learned from empirical probabilities; the n-test need not be known to be 
sharp or complete in advance. Therefore, repertories are empirically defin- 
able, except for guessing n. This n is, however, to be kept minimal for 
overall fit, corresponding to a refusal to make room for hidden 
mechanisms in advance of states and tests that require them. For example, 
enlargement of the matrices of atomic physics upon discovery of electron 
spin would have been pointless prior to the task of inclusion of spin-depen- 
dent effects into the experimental situation (fine structure, sensible exposi- 
tion of the exclusion principle). When what seemed to be one-dimensional 
projections must split owing to finer new experiments, that is the time to 
enlarge the matrices. 

We thus fall back on philosophy to bound n from above, but we may 
have facts to bound n from below: If s states P1,- . . ,P,  confront an s-test 
(A 1 . . . . .  As), and the probabilities Tr PiAj are g0 as for a repertory in n •  
MF, then n/> s (MB). 

The notion of repertory associates certain bins of certain tests with 
states, A i = P;, even if the test destroys the state, or if the remains of the 
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state are not Pi: What the bin in question "catches" is the same (meaning 
same matrix) as what some state procedure, possibly unrelated to the test, 
"produces." If the test is destructive then preparation of state i can 
nevertheless provide a state like what the ith test bin would have output 
were the test a filtration: Repertories are technically as useful as "reduc- 
tion of the wave packet." 

Theorem 6: Freezing Modulo Conjugations. The values n and Tr  
PA for a sufficient set of states P and acceptors A define all the 
matrices up to an overall unitary or antiunitary conjugation. In 
particular, the set of all the matrices from all the complete reperto- 
ries is sufficient: Given the values Tr  PiAj for all state matrices of 
all repertories and for all acceptors of all other repertories, and the 
values of all Tr  PiA for one unknown acceptor and all repertory 
state matrices, or else given the values of all Tr  PAi for one 
unknown state matrix P and all repertory test matrices, then all 
the P~ = Ai are first fixed up to unitary or antiunitary equivalence, 
and the further information about A or P then fixes A or P in any 
choice of representation. 

Proof. Pi =hi  = Ixi><xil. Since Wr e, aj = I<xilxj>l 2, the absolute values 
of all inner products of empirically labeled unit vectors are given: The 
"empiric label" is the designation by state, as defined by the preparation 
procedure, or by test and bin. The mathematical content is that there are 
so many experiments defining complete repertories that all unit vectors 
occur as x i in ei = Ix~>(x~l=Ai. A well-known theorem of Wigner (1959, 
Bargmann, 1964) states that a mapping of Hilbert space that preserves the 
norm must be either a unitary or an antiunitary conjugation. Hence if 
particular vectors x~ (n-tuples of complex numbers) are found to yield the 
given I<x,l >l values, then any other vector solution is either a unitary or 
antiunitary transform of these. 

Finally the Tr  Pi M or Tr  MA i empiric probabilities for an unknown 
M give <xlMlx> for all x, and thus fix M. [] 

Comment: Freezing with a Finite Number of Experiments. The infini- 
tude of experiments required above is fortunately superfluous. A com- 
pletely unknown Hermitian matrix M requires only n 2 independent real 
data to define its elements, so the Tr  PiM or Tr MA i should fix M, for only 
n 2 matrices Pi or A i. Indeed the n 2 one-dimensional projections P l =  Ixl)  
<xll . . . .  ,en2= Ix.2><x  l do define M through Tr  Pi M, if the n 2 vectors x i 
start with x~ . . . . .  x~, an orthonormal Hilbert-space basis, followed by the 

1 1 

2-  ~(x i + ~ )  for i <j ,  then by the 2 -  ~(x i + ixj) for i <j.  
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The one-dimensional projections from several repertories are less 
efficient: They are constrained to give a list where the first n projections 
are mutually orthogonal as above, but then the next n are also mutually 
orthogonal, etc. After the n diagonal elements 34,.,. are attained as Tr  PiM 
from the repertory (taken diagonal for convenience), the trace Y~iMii is 
known, whence the n diagonal elements (UrMU r- 1)i i available from each 
rth repertory for r >  1 give at most n - 1  independent new pieces of 
information. To fix any M, at least n more repertories are needed; indeed 
n + n(n - 1) comes out n z. This makes at least n + 1 repertories altogether. 
By using U r ---1+ ~ Hr infinitesimally different from L and H~ an off-diag- 
onal matrix with ones connecting only one particular diagonal spot to all 
other places, then also other H~'s with i's and - i's placed similarly, I can 
show that 2 n +  1 repertories suffice, but expect that only the trace re- 
dundancy really matters, and will take it that n + 1 repertories suffice. 

If M is known to be a one-dimensional projection, then it is d e -  
termined by the 2n real and imaginary parts of the n complex components 
of vector x, where M =  [x) (x [ ;  normalization and irrelevance of x's phase 
show that in fact there are only 2 n - 2  independent real parameters. 
Therefore, Tr PiM or Tr MA i information for only two sufficiently 
disparate repertories, should suffice to fix a state or acceptance matrix 
already known to be a one-dimensional projection. Two, not one: one may 
say a repertory and a complementary repertory. 

The matrices of a first repertory may be chosen, say, P; diagonal with 
1 in the ith place. The only unitary equivalence yet allowed is the n phases 
of the basis vectors which render this so. An overall phase is the trivial 
unitary transformation, affecting no P or A matrix, so only n - 1  real 
parameters are undefined. These may be fixed by requiring the first matrix 
P;  of a second repertory, where Tr  P~(P;=A~)~O, all i, to have all its 
elements positive, in which case the empirical Tr  PiA] fix P~. Although no 
parameter is left unfixed for the eventual fit by these conventions, the 
empirical data Tr  PiAj = Tr Pj:A; gained by confronting the states and tests 
among only two repertories are insufficient to then fix the P~ . . . . .  P,~ 
completely: A repertory is defined by n 2 -  n independent real parameters, 
whereas of the n 2 data Tr  PiAz, the conditions P,  = 1-Y,'~s and A" = I -  
~,'ls i show at most ( n - 1 )  2 of these are independent, leaving at least 
n 2 - n - ( n 2 - 2 n +  1)= n - 1  undefined parameters. Whether the data from 
the mutual experiments with a third repertory suffice to freeze the 
matrices, I do not know. The "antiunitary" option of course enters when 
complex elements appear, in that " i "  can be replaced everywhere by " -  i". 

In the problem of fixing the second repertory, write P j=lx j : ) (x j [ ,  
xj = a i~xi, to compute the matrix elements (x~IPj:lxk)= ~,tg; , in terms of an 
incompletely known unitary matrix t~i, with only [asi I given. Choosing P~'s 
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matrix elements positive fixes the first ajp The n phases of aj2 must fit 
orthogonality of the first and second columns, leaving only n - 1  free 
phases. Similarly, there are only n - 2  free phases for the third col- 
umn . . . . .  leaving only n ( n - 1 ) / 2  phases undefined. Finally, the overall 
phases of x~ . . . . .  x,~ do not matter to the P~ . . . .  , P,~ matrices, n - 1 inessential 
phases, leaving ( n - 2 ) ( n  2 -  1)/2 essential phases. In particular, for n - 2 ,  
this is 0. (This is easier to see from P ~ = I - P ;  being fixed by the 
convention of positivity for P;.) For n=2 ,  complex numbers need not 

1 ( n - 2 ) ( n -  1)= appear until a third repertory is considered. But for n --- 3, 
1; one essential phase. 

If the � 8 9  phases at the stage of the second repertory are 
chosen, then each subsequent one-dimensional projection from subsequent 
repertories will be defined by its empirical relationship with the first two 
repertories. A wrong choice--and except for "i--->-i," phase reversal, 
there is only one right choice--will eventually lead to an inconsistency, 
possibly much later, but probably already at the fitting of the third 
repertory. 

But given the right phases, somehow, for two repertories, all other 
one-dimensional projections are fixed by their empiric relation to the two 
repertories. The matrices for n + 1 repertories altogether are then "easily" 
obtained, if so many repertories can be found, and then any state or 
acceptor is defined by its empiric relationship to the n + 1 repertories. 

12. VECTOR FORMAT VF, DOT-PRODUCT FORMATS DFI, 
DFz 

Regard the n • n Hermitian matrices as a real n2-dimensional Hilbert 
space with Tr AB-->A.B (Section 1.6). Note that I . I=  n. A basis con- 
venient for some purposes is I , n - 1  matrices with a single 1 on the 
diagonal, l ( n 2 - n )  with two ones mutually transposed, �89 with 

1 

_+ ( -1 )5  mutually transposed. A Schmidt process produces orthonormal 
1 

basis (e 0, e I . . . . .  en2-1) with e 0 = n - 51. e0e i = 0, i > 1 siamifies tracelessness of 
those e i (as matrices). Except for nonnegativity, MF is evidently about dot 
products of vectors. This information supplemented by a determination of 
which vectors are nonnegative is vector format, VF. I is identifiable by 
I . I=  n and by the central nature of the I axis in the nonnegative cone (not, 
however, a cone of revolution: Appendix C or D). If the vectors are 
matrices, with nonnegativity determined by determinants, VF is MF in 
disguise. Theorem 6 indeed shows that designation of the appropriate 
vectors as nonnegative already limits the notion of equivalence to the usual 
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conjugation. But the dot products are invariant to the larger O(n 2) group; 
even the O(n 2 -  1) group of / - f ixed  rotations is larger (in dimension) than 
the conjugations if n > 2 (though they do match for n = 2). Hence, we have 
the following theorem. 

Theorem 7." V F  Inexpressible through Dot Products. Nonnegativity 
cannot be expressed in terms of dot products or orthogonal 
invariants (essentially dot products, Weyl, 1946). 

Two Dot-Product Formats. Nevertheless th is  can be circumvented as 
follows at the cost of enlarging the equivalences to either the O(n 2) or the 
O(n 2 -  1) groups. Let any rotate [by either O(n 2) or O(n 2 -  1)] of the 
nonnegatives be called a nonnegative shape. A solution will be a set of 
vector states, acceptors all lying in any common nonnegative shape. This 
defines dot-product formats DF1,DF 2. Theorem 7 no longer obviously 
applies, and indeed DF 1, DF 2 can be set forth explicitly. But first expand 

--~i=0 mi(ei)ab. Work out the formula general matrix M on the e basis, M~b -- ,2_ l 
for d e t ( x I + M )  in terms of the m i. It will be a polynomial in x with 
polynomial-in-m coefficients 7k(m), k = 0  . . . . .  n, with p , ( m) =  1. The non- 
negative body is specified explicitly bypl,(m ) > 0 conjointly, k =0  . . . . .  n -  1. 
(Appendix A, Theorem 9): So far this is homework, leading to explicit 
polynomials in m. 

Now, let x = (:Co,..., x,2_ l) be any orthonormal list, where x o = e 0 if I is 
to be fixed, otherwise free. The nonnegative shape with respect to x is the set 

n 2- I {Xi-0 mlxi.Po(m) > 0 ..... P._ 1(m) > 0}. But m i = x:M is a dot product. 
Hence pk(mo, . . . ,  m,2_ 1) > 0 is in principle explicitly stated in terms of dot 
products. DF l and DF 2 are then "explicitly" 

1 

xi" x j ---- 8#., Xo" P a = n - 

Ajk'Xi = n�89 8oi, Pi'Ajk = P # k  
k 

p~(xo'P, . . . . .  x~_cP~)  >o 

p,(xo.A:,.. . ,  > o 

Perhaps a nonorthonormal basis e:, with e;.~'=gij , could provide 
easier polynomials p:, to simplify this orthogonal-invariant approach. 

An attempt to define computation entirely in terms of dot products 
themselves, without the vectors and hence without orthogonal invariance, 
is the sparse format of MB. 
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13. THE CASE N =  2 

Separating the Trace Part (n Not Necessarily 2). 
Any matrix M is uniquely decomposable according to M =  (1/n)  (Tr 

M ) I +  M', into a multiple of I and its traceless part M'.  This corresponds 
to writing the 0 component separately, M = Z,7~=olmie,--+(rnoeo, ~,7~=~ lmiei) , in 
VF language. We can split the dot product, A-B = aob o + (a, b). a = y~7:=]1 

aie i is the vectorpart of A,a o is the tracepart of A, a0= n -~Tr  A. 
The compact nonnegative body B is conveniently taken as the set of 

vector parts of the intersection of the nonnegative cone with the sheet of 
matrices of trace 1. I can be largely suppressed: Since every state matrix P 

1 

has trace 1 (0 component n-~),  nonnegativity of a state matrix is rendered 
by p E B, where p is the vector part of P. Then Tr PA or P.A becomes 

1 

n -  ~a 0 + (p, a). Nonnegativity for acceptor A becomes a o > 0 and either 
1 

a = 0  if ao--0, or n - ~ a o l a ~ B  if not. The requirement that acceptors 
1 

A 1 .. . .  ,A b sum to I becomes that their trace parts sum to the number n~, 
I 

alo+. . .  +abo=n ~, whereas their vector parts sum to the 0 vector, a~ 
+ . . .  + ab--0. 

n = 2. VF is here particularly convenient, because for n =2  the com- 
pact positive body B is O(3)-invariant; the compact "shapes" all coincide 
with B. In fact, the Schmidt-process basis is 

- •  0 --1 l 1 1 __0), 2--~( 0 01), 2 ~ ( i  --0) ~ 
by choice of phases; by renumbering these, respectively, eo, e3,el, e2, we 

1 

have e i = 2-~oi, in terms of the usual Pauli matrices. The eigenvalues of 

Y~=laioi are +_[(al)2+(a2)2+(a3)2]�89 i.e., +_(a,a)�89 therefore A >/0 if and 

only if ao>~ (a,a)L The specialization a0-~2-~ produces the trace-1 posi- 
1 

tive body B, the ball of radius 2-~ in 3-space. 
VF for n = 2 can therefore be described as follows: Each state is 

1 

represented by a real 3-space vector O, with Ip[ < 2 - L  Each b-test is 
1 

represented by b non.negative numbers a~o,... , abo with alo + - . .  + abo--2~, 
and by b 3-vectors a l . . . . .  ab, where [ai[<ai0, and a l + - . .  +ab=0 .  The 
probability Tr PA that state 0 activate bin k with parameters a m and a k is 

1 

2-~ago+(O, ak) 

1 1 
The completely unpolarized state P = i I = 2 - ~ e  o has p=0.  Thus 

I 

2-~ako is the probability that bin k accept from the completely unpolarized 
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state. So the ajk o can be ascertained prior to seeking vector parts if an 
empirical procedure is known for preparing the completely unpolarized 
state, for such tests j as can be coupled with a completely unpolarized 
procedure. 

If n =2  is only a hope for study of an unexplored domain, no 
unpolarized procedure may be established, and the ajk0's as well as all p's 
and ajk'S would be unknowns in a grand fit to the state-bin probabilities. 
In the event of 2-tests with a strongly plausible "symmetry" between the 

I 

two bins, one might wish to try a 0 = b o, in which case a o = b o = 2-~.  Such 
assumptions of symmetry might run counter to a factual bias, and should 
be dropped if they fail to produce a solution. For example, if the empirical 
domain is part of visual perception, symmetry between "up" and "down" 
is unlikely for a type of subject interested differentially between things in 
the sky and things on the ground. 

Picturing the Case n = 2. The  real 4-tuples (mo, m) map the 4-space of 
1 

Hermitian matrices. The nonnegative cone is given by m o ~ (rn, m)L If the 
object is depicted with m 0, time and m, a point in 3-space, then the cone is 
a movie of events beginning with a dot at the origin and growing outwards 

1 

with speed 1 as a solid ball, which becomes the ball of states at time 2 - L  
The 2-plexes or questions ( A , I - A )  are indexed by A which lie not 

only within this growing ball, but also lie in a similar shrinking ball, 
1 

starting at radius 2~ at time 0. Thus, the set of all such A starts as a point 
1 

at time 0, grows uniformly as a ball until its radius becomes 2-5  at time 
1 1 

2-~, then shrinks uniformly back to a point at time 2L This body is the 
spindle of MB. Appendix D partly describes the spindle for general n. 

1 

The ball at the central time 2-~ is the ball of states; its 2-sphere 
surface, the pure states, one-dimensional projections in MF, its center, the 

1 unpolarized state i 1. 
The 2-plexes are ordered pairs of events with midpoint at the center 

�89 of the spindle. Extreme 2-plexes, the sharp questions, are either order- 
ing of diametrically opposite points on the 2-sphere surface of the ball at 

1 

central time 2-5, or of the single pair 0 and 1, the spatial center at time 0 
I I 

and 2L So a sharp 0-free 2-test has both trace parts 2-~ and vector parts 
1 

of length 2-5. 

14. THE P R O G R A M  

The problem here is how to search for matrices that satisfy MF for 
given empirical probabilities Pgk. Ideas that lead to a computer program 
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will be given (Lubkin and Lubkin, 1979b presents a program for n = 2, 3, 4), 
but first the possibility of an analytical solution is discussed in relation to 
the problem of invariance. 

14.1 Invarianee. If a problem has 0 or 1 solution, then a computa- 
tion can arrive at a proof that there is no solution or at the unique solution. 
If, however, the solutions are more numerous, no one may be selected by 
the proposed computation. MF is therefore ill equipped for computation 
because for any one solution there is an infinitude of equivalent conjugate 
solutions. It is therefore desirable to reformulate the problem in terms of 
conjugation invariants. The device of imposing "irrelevant" further condi- 
tions to single out a solution will be regarded as a reformulation of the 
problem however too devoid of the symmetry which renders things analyti- 
cally tractable. The part played by a random start in a computer search is, 
however, an example of getting on with it by in fact using arbitrary further 
conditions to break through the impasse in a nonanalytic context.  

It is for this purpose of fighting invariance by reformulation that 
formats other than MF were explored. But VF is like MF. DF1, DF 2 leave 
the logic invariant under a yet larger group, O(n 2) or O(n 2 -  1), and arrive 
at a situation in which nonnegativity assumes a complicated aspect, if 
solution vectors are required. Nevertheless, the DF equations involve only 
orthogonal invariants, the dot products. A suggestion for computing new 
dot products from old is sparse format, in MB. 

14.2 Search. In the absence of a conjugation-free algorithm, it may 
be worthwhile to seek a method of searching for a solution to MF by trial 
and error, suitable for a computing machine, using a random start to break 
the invariance impasse. Program MATRIXVORMAT for n =2, 3, or 4 and 
comparison program CLSSCLFORMAT restricted to diagonal matrices (nomi- 
nally n < 99) are discussed in Lubkin and Lubkin (1979b) and are available 
from the Computer Physics Communications Program Library. It is prob-  
ably worthwhile to have trial matrices Pi,Aj~ chosen identically non_nega- 
tive, with Tr P i=  1, and ~ _ l A j k = I ,  perhaps by the asymmetrical 
approach of choosing only A./1 . . . . .  Aj,~_ t and putting Aj, b~ = I--]~k<~Ajk. 
Verification of nonnegativity could be done by the n determinantal condi- 
tions of Appendix A. But in our programs, nonnegativity was guaranteed 
by using matrices that were squares of other matrices. 

A somewhat arbitrary measure of demerit would be ~ = Y~(Tr PiAjt,- 
pOk) 2, the sum running over those i,j, k for which Pok is empirically known. 
A "heteroscedastic" approach is a possible refinement, weights w o or WOk 
being included as factors of the terms in ~ so as to make statistically 
better-defined Pok values have greater importance, or in order to otherwise 
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skew the importance of thep0 k data. Our programs use q~ with a WOk option. 

The task is to minimize q~ by trying different lists of P and A matrices. 
This is to be done for small n first, starting at n = 2 unless a repertory with 
larger n is already evident from the data. If the best fit for some n is judged 
bad, then n is increased by 1. In our programs n is set by the user. ~ is an 
inhomogeneous quartic in the real and imaginary parts of the matrix 
elements of the P ' s  and A's. Those of these real variables not fixed by the 
Tr  P =  1 and Y~A = I conditions are the independent variables x;. The 
3q,/Ox i could be computed analytically, being inhomogeneous cubics. Of 
course, -Oq,/Ox i is the direction of most rapid decrease of 9; trying new 
P,A  via x~--ox ~ -  e~,C,/Ox i, for e positive, is probably better than searching 
randomly. For such variation, the Taylor expansion to the quadratic term 
estimates the variation of q, as being 

i Oxi ~x i + - 2  . ~xg Oxi~)x ~. ~xi 

more briefly, ~ 2 -eq~iq~;+2e q~;q~,7%" This is minimum or maximum for e =  
epi~ki/~kq, k. If the quadratic approximation is good, as is likely ff a local 
minimum is close, this should be a minimum, and give an easy estimate of 
how far to go in the direction of most rapid decrease. If this e is negative 
owing to negativity of ~ k ~ k ,  then the situation is more like getting away 
from a maximum, and a notion of how large a positive e should be used in 
stepping is not provided by the quadratic estimate. 

The matrices of the last trial will all be nonnegative. If positive, then a 
sufficiently small step will not change that. Nonnegativity need not  there- 
fore be incorporated into the first decision about where to step to; but 
after this is tentatively decided, the nonnegativity would have to be 
rechecked. If violated, a shorter step can be tried. Our matrix-squaring 
technique provided more definitely for nomaegativity. 

It seems a priori unlikely that any of the actual states and tests be 
pure or sharp, or even that any of the P,A  matrices lie precisely on the 
boundary of the positive cone. If the search procedure outlined tries to 
head for such a realistic, all-P-and-A-internal solution, it should not  seek 
to cross the determinant-zero boundary of the positives. On the other 
hand, a spuriously good fit violating nonnegativity may attract a program 
no better equipped, and some matrices might show at least an early 
tendency to try to cross the boundary. To cure such an evil, it might be 
necessary to freeze such matrices, then to later let them loose again and 
hope they go strongly positive, owing to a better settling of the other 
matrices. 



572 

Especially if the idea of an n • n matrix fit is all wrong for some 
empirical domain, then the hope that a search in heading for a reasonable 
solution will in the main try to avoid the boundary cannot be relied on to 
keep the calculation within the boundary. Also spurious over-the-boundary 
local minima may attract more strongly than a distant good, all-nonnega- 
tive minimum. In that case, the matrices may hit the boundary, and even 
more extreme surfaces of the boundary in a program which allows motion 
along the boundary. A tendency for some matrices to have zero eigenval- 
ues may thus mark an insufficiently complete search, rather than excel- 
lence of the experimenters in preparing nearly pure states and nearly sharp 
tests. 

Again, specters of badly controlled nonnegativity caused us to bypass 
these issues by squaring techniques, in our programs. 

In such computerized search, the problem of conjugation equivalence 
may seem not to arise at all: The program would not bother to conjugate 
its matrices because r would remain unchanged; the stepping would be in 
quite a different direction, designed to efficiently decrease r To under- 
stand where there is nevertheless a battle against conjugation equivalence, 
consider the suggestion that search start at all matrices proportional to I 
and, say, bin-independent within each test: Pi = n -  11, Ajk = bj-  1I, instead of 
random matrices. An/-proportional point in search space is conjugation- 
invariant. The directions away from it are not, except for those effecting 
mere reweighting of the Ajk away from equal weights for all bins in one 
test, so after optimal reweighting, - ~ ?  must fail to point towards a 
minimum, by being zero. A sufficiently asymmetric choice must be made 
either by fiat or else by means of (pseudo-) random numbers (which could 
of course be injected inefficiently through rounding error!). An I-propor- 
tional case, even if stationary, is of course not usually the solution. 
Similarly, the first time an imaginary part becomes necessary, its sign 
would have to be injected by ex machina noise or by a programmed rule. 

14.3 Extreme Formats. Before a fit, it is not known whether empiri- 
cal procedures in fact provide pure states or sharp tests, or what n to use. 
Yet near-extremity of procedures given n may be proven by a fit, the fit 
furthermore rendering the value of n plausible. The P,A matrices of these 
unmixed or slightly mixed procedures will be close to the boundary and 
even to subfaces of the boundary of the positive cone. Unless there is such 
near pinning to the boundary, the solution will display some extra orthogo- 
nal-transformation rattling within the positive cone beyond unitary and 
antiunitary conjugation. An optimal approach to the data would use the 
interrelationships between the near-extreme "good" experimental proce- 
dures and also the other, more mixed procedures, to firm up the whole 
solution. 
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It is nevertheless possible to impose extreme formats where either state 
procedures are by fiat pure, or test procedures are by fiat sharp, or both. 
An actually badly mixed procedure would then have to be represented by 
a best approximating extreme point, far away from the actually optimal 
nonextreme point outlawed by the format. In being far off anyhow, it will 
not greatly enlarge the demerit ~ for the point to vary from its not-too- 
good best place. The representatives of badly mixed experimental proce- 
dures would therefore be shown up, within an extreme format, by being ill 
defined, e.g., by having large errors quoted. The procedures themselves 
could then easily become regarded as unsatisfactory empirically--and 
their mixity in some sense does render them less informative than purer 
procedures--and in consequence dropped from the empirical domain and 
from the program. The loss of weakly determined elements should not 
radically modify the loci of the better-determined points, but these may 
even be expected to become much better defined, owing to omission of the 
errors involved in overlooking mixity of the elements now cast out. 

So if there are enough nearly extreme procedures actually in the 
empirical domain, the nature of the quantum logic could emerge, even 
under the handicap of an extreme format. 

14.4 Apology to Statisticians. Queues. The level of the mathematical 
statistics involved in asserting a program of minimiTation of an ad hoc 
demerit ~ is undeniably primitive. Also the incorporation of standard 
statistical notions and methods to evaluate the reliability of a best solution, 
to quote errors, is obviously wanted. 

It may be worthwhile to draw attention to one particular statistical 
worry. The trials are supposed to be statistically independent. It is never- 
theless tempting to define many trials from a single extended queue 
procedure of form preparation 1, test l, preparation 2, test 2 . . . . .  prepara- 
tion q, test q, a queue of length q. Preparation r specifies how to use what is 
left as a state, after effecting test r -  1. The queue may be regarded as split 
into preparation of a state and execution of a test in q different ways, the 
split being immediately before test r in the rth way. The history prior to 
the split, i.e., preparation 1, test 1 and its outcome . . . . .  preparation r, is an 
elaborate state procedure; the history after the split is an elaborate test 
procedure, whose bins are specifications of all the outcomes of the subse- 
quent simple tests r, r + I . . . . .  q. It may seem wrong to use a single passage 
through a queue to provide q "independent" data for the whole fit, one 
datum for each of the q ways of splitting the queue. 

Queues were used multiply in our visual perception experiment (Sec- 
tion 15.2), and not to relate the elaborate states and tests referring to the 
whole histories before and after each split, which would have been too 
numerous, but to the simple states and tests. In order that the history prior 
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to the immediate preparation before a split have no systematic influence 
on the succeeding test, that history was randomized. 

14.5 Analogy to Factor Analysis. In spite of its need for improvement 
from old-fashioned statistics, MF or VF may already be a new statistical 
method. A solution invests some empirical preparations with state matrices 
or vectors P, and some empirical tests with b-plexes of matrices or vectors 
A; these mathematical objects entail notions of identity, orthogonality, 
more generally of angles between procedures, etc. The angles are known 
only a posteriori, after many trials and subsequent calculation, not through 
mere description of the empirical methods for effecting the procedures. We 
get a geometrical depiction of procedures here through experiment and 
calculation, and that is what people are after who use factor analysis. 

14.6 The Statistical Danger of Early Choice of a Representation. It is 
usual in quantum mechanics to introduce a choice of representation. For 
example, algebraic relationships assumed to hold between the matrices 
may lead to a proof that, up to conjugation, a particular representation 
may be used, with many of the matrices known prior to any empirical 
trials. The choice of representation is usually dominated by theory. This is 
reasonable where physical theory antecedent to the quantum approach is 
respectable. A choice of representation may also be indicated early by the 
early discovery, through trials, of a repertory, guessing n. The program 
suggested, on the other hand, is meant to deal with a situation where there 
is no clear prior theoretical bias to respect, and where no clear repertory 
presses for an easier sort of analysis. 

There may be a virtue of conceptual clarity, nevertheless, in attempt- 
ing to fix a representation by declaring a certain matrix M to be diagonal, 
perhaps another one real, etc. But such a procedure may be statistically 
crude. Indeed, it may become clear only later, from the trials, that M's 
relationship to the other matrices X, the dot products M.X, are only poorly 
known. By defining standards relative to such a poorly known quantity, 
the accuracy latent in better-known X.X'  dot products could be 
suppressed. What quantities are most accurately fixed by the data may be 
hard to anticipate, and may when known turn out to be awkward concept- 
uaUy. 

I have presented a method not tied to prior choice of representation in 
order to be statistically fair to the data. 

15. BACK TO QUANTUM PSYCHOLOGY 

There follow thoughts on quantum psychology best presented after 
accepting the subject as legitimate, and after laying the foundation of 
model-independent quantum mechanics typified by MF. 
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15.1 Dreams. A Heisenberg-microscope discussion in quantum psy- 
chology provides new thoughts about the Freudian unconscious, and 
dreams. 

The idea is to try to beat the uncertainty principle, by determining 
which of several slits has been traversed by a particle, yet without spoiling 
the diffraction pattern. If this can be done, the matrix mechanics behind 
the uncertainty principle would be shown invalid. 

It is supposed that, say, application of MF to a domain of psychologi- 
cal experimentation has generated an association of state matrices to 
specified procedures of preparation, so that one may speak without vague- 
ness about "states of mind." Of course there are also "bin acceptors of 
mind"! 

Suppose that a particular state of mind is a known linear superposi- 
tion y = ~ i a i x l  of other states, x i. T h e  x i are known to be orthonormal, 
perhaps because they are part of a repertory. These states y , x l ,  . . . , x , ,  are 
possible states of mind of a single subject, produced by known procedures 
of preparation. Let there also be a "diffractive" consequence of the state y 
sensitive to the phases of the coefficients ai, not just to the la~l 2. Then a 
concurrent demonstration of the value of an observable which chooses 
between the different x i must be impossible. 

Suppose that the subject can, by introspection, determine which one 
of x 1 . . . . .  x n describes his state of mind in regard to an x issue, and can 
perhaps also convey this knowledge to a piece of paper. Then the uncer- 
tainty principle could be violated in the diffractive experiment, if after that 
experiment the subject could faithfully report what his state of mind was in 
regard to the x issue before application of the diffractive test, by recalling 
the outcome of his introspective determination. If the earlier introspective 
outcome were recorded on paper, the recall could be effected by simply 
reading the paper. 

The information on the paper provides the mutually orthogonal 
attributes not involved in the diffractive test, needed to apply the inter- 
ference theorem. The introspective record would also do the same thing. 

But it does not follow absolutely that quantum psychology therefore 
does not make sense, because it could be the supposition of self-knowledge 
of one's attitude to the x issue that is at fault. 

The procedure for effecting the x test may well be no more than to 
ask the subject to mentally select between alternatives x I . . . . .  xn, a thing so 
easy that the subject is capable of performing the x-test introspectively. If 
another procedure has been applied to cast the subject into state y,  then 
that other procedure must nevertheless be incompatible with the subject's 
ability to perform the x test himself with sufficient force as either to fix a 
reliable memory of the result, or else with sufficient leisure to allow the 
production of a paper record. 
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The closest this can be pushed short of a contradiction is to indeed 
have an x determination but to fail to remember the result. This already 
sounds like the Freudian unconscious, or like a beginning of a theory of 
dreams. 

It is puzzling that mental processes of great significance should be 
unavailable to introspection (Groddeck, 1961). An easy solution to this 
puzzle is that precisely those mental processes unavailable to "conscious- 
ness" most easily go awry through lack of control, hence gain a pathologi- 
cal importance; but I will ignore this easy way out to point out a possible 
quantum-mechanical solution: The operation of uncertainty principles not 
only permits models whose functioning necessarily entails forgetting, but 
even suggests that the "strongest" mental processes are those most involved 
with forgetting and unconsciousness. This follows from the associations of 
weakness of interaction to classical ontology and of strength to quantum 
ontology, and from the argument for strength at the center of control. The 
quantum nature of the center of control should go with lots of uncertainty 
or unknowability principles, incompatible with the keeping of a record in 
memory of its operations. 

It is easy to lose coherence in an interference experiment by allowing 
the different x; to propagate characterizing attributes to things not being 
tested. Fast techniques may therefore be essential for quantum psychology. 
A lack of leisure to think about the x issue may be crucial. 

15.2 Our Psychological Experiment. These comments about dreams 
and the unconscious reinforce our enthusiasm for doing psychological 
experiments suitable for study by MF. The easiest case is n = 2, a "polari- 
zation." This makes two-way flip-flop psychological effects attractive: an 
n--2 empirical domain at least has no sharp b-test with b>2.  I will 
continue to explain our motivation for such an experiment, much as I 
proposed at the May 1973 London, Ontario conference (Lubkin, 1976), 
then comment on the actual experiment and on our negative result. 

Analogy to a plane-polarizing filter for light suggests that we seek a 
dichotomic illusion (A (0), B(O)) with a continuous cyclic parameter 0 such 
that A(O + const) = B(O) and B(O + const) = A(0): 

_ +  _ +  • +_  + -  

The symmetry implied for the two views perhaps makes the word "illu- 
sion" inappropriate. In any case, the Necker cube (Attneave, 1971; 
Gregory, 1968, 1966) of Figure 2, which can be seen as a cube in 
perspective in two ways, is such a display. It has the property that if the 
fight-hand one of the two corners internal to the hexagonal boundary of 
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Fig. 2. The Necker cube at 0 ffi 0. Fig. 3. The Necker cube at another 0. 

577 

the drawing is seen "high" and then the actual planar drawing is turned 
within the plane, and if the high internal corner is tracked continuously, 
one passes to the state of mind in which the original concrete figure, now 
restored by a planar congruence, is seen the other way. Thus "cons t "=  ~r; 
the planar turning of a sheet of polaroid gets to the other polarization with 
"const" = 7r/2 instead, in the optical analogy. 

Our experiment used eight equally spaced 0-rotated views of the 
Necker figure ~r/8 apart: call these cubes. The cubes were projected on an 
HP-1317 cathode ray tube display screen under the control of a MODCOMP 
minicomputer. The points of one cube were once and for all precomputed 
on the UWM Univac installation and prepared in scrambled order, and 
seven  rotates of this one cube were also Univac prepared, so that the 
minicomputer had only to make a data transfer from its own fast memory 
in order to transmit a new view to the screen. Thus the whole view seemed 
to appear at o n c e - - a n d  because of the scrambling, the points in the 
various edges were in fact not filled in in any neat ordering. I note this 
because readers familiar with minicomputer displays may imagine a figure 
slowly "painted" in- -whatever  faults our experiment may have had, this 
was not one of them! 

A run went as follows. The first thing visible on the screen was a 
small, centered circle, and a somewhat more intense blot or "point" of 
light. The subject S was asked to run the point into the fixed circle, by 
manipulating a joystick. It is the time that took which selected which of the 
eight cubes appeared as the first display, assuring a random choice of first 
view: poor human control over time made S our analog and principal 
randomizing device, both in this minor matter of assuring a random first 
view and in the major matter of assuring independently random subse- 
quent views. 

With the appearance of a cube, the point disappeared, S now finding 
the small circle to be under control of the joystick. S's next task was to 
conceive the cube three-dimensionally, to decide which of the two cube 
vertices closest in the actual planar figure to the center ("central corners") 
appeared to S to be three-dimensionally closer, and to guide the moving 
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circle to this apparently closer corner. Collision of the circle with one of 
the two central corners constituted the objective means of reportage by 
which S's  manner of seeing the cube three-dimensionally was transmitted 
to fast storage. Also transmitted at this time was the choice of cube itself 
and the time taken to make that choice, rounded off to tenths of a second 
- - b u t  we have not had occasion to seriously use this timing information, 
except that if S dawdled too long (30 see) the run was terminated. In this 
case the collection of a next report effected termination, with the tardy 
report being dropped. 

This circle-corner collision also brought up the next view: a new 
random cube would appear with a newly centered circle not controlled by 
the joystick, the last joystick position, now eccentric, reverting to the 
intense-point marker. From here on, the story repeats: S would have to 
move the point back to the central circle in order to get control of the 
circle, so as to be able to report S's three-dimensional interpretation of the 
new figure. In this possibly clumsy way, S would not be misinterpreted 
automatically as reporting the same answer, when the same cube view 
happened to reappear. 

If a run was not terminated first by S taking too long to report a view, 
it was terminated at 1024 views. It is only at termination of a run that data 
were transferred from minicomputer fast storage to tape. 

A typical subject would take 1 sec, or a little less, per view. 
When a new view came up of the same cube, this of course was 

evident by reappearance of the one-point marker and retreat of the small 
circle to the center, but there was also apparent a fleeting (and thoroughly 
satisfactory) "blink," probably corresponding mostly to the reloading of 
the 4096-point HP-1317 memory, a roughly 0.01-sec procedure. 

We were not interested in making distinctions between subjects, not 
even basically in studying visual perception: we 0nly wished to learn 
whether a psychological experiment would reveal large quantum coherence 
effects by being much better fitted by MF than by CF. Hence we had no 
reason to concern ourselves with choice of subjects and no notion of 
separation of subjects into a distinguished class and a class of control 
subjects. I think this aspect of our work seems unbelievably wrong to some 
literal-minded biologically trained people. 

Our main result is negative: we found no evidence for the superiority 
of a quantum-mechanical model. This makes analysis of fine details 
uninteresting, so my report is about making the negative situation simply 
evident (as in Lubkin and Lubkin, 1979a and 1979b), then commenting on 
weaknesses of our experiment. 

It is the seeing of a cube and the reporting of a view which we took to 
define a state. Thus we had 16 states. The next display of a cube was taken 
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as a test, hence we had 8 2-tests, the view reported being regarded the 
outcome, making each bin number b indeed 2. The number of independent 
probabilities is then 128. Except for the first and last views in a run, each 
view thus served both as state and test, an experimental design already 
denoted previously as a queue. Perhaps this is the only sensible way to 
index our experiment in the (state, text, outcome) manner, in which case it 
may be discourteous to readers to so tediously set it forth, but  it is not the 
only way to do it. For  example, consecutive pairs of views could have been 
taken as the elements of a half-as-long queue, to give us 256 states and 64 
4-tests, and a need for much more data than we have to claim a reasonable 
determination of probabilities. In some reductions, we weighted trials (i.e., 
state-test transitions) inversely as the time recorded in the test report, using 
a heteroscedasticity feature of our MATRIXFORMAT, CLSSCLFORMAT pro- 
grams (Lubkin and Lubkin, 1979b), but with no interesting consequence. 

The quantum-logic dimension (Section 9.3, Theorem 2) for n = 2  is 
d(2)=77, but d(3)= 192, d(4)=353. Hence except for n = 2 ,  the 128 inde- 
pendent probabilities are fewer than the number of effective fitting param- 
eters. But our count of 128 independent probabilities could be inflated, if 
the division of the continuum into 8 states is already too fine, implying 
needless interpolation. We are up against the difficulty that MF's 
numerous parameters may too easily fit anything. This is an elementary 
counting argument known to us in advance, to show that our experiment 
was marginal. 

The total number of trials in our whole data base was 30746. An n = 2 
approximate quantum fit achieved an r.m.s, deviation of theoretical from 
experimental probabilities of 0.080, whereas a corresponding n = 4 fit with 
diagonal matrices achieved a similar r.m.s, value of 0.082. Both these r.m.s. 
values represent fits to the data so close that some of the noise is being 
fitted. But their similarity shows that the quantum fit is no better than that 
classical fit which shares about  the same number of essential fitting 
parameters. This shows that we have no sign of interesting quantum 
effects, so we have not tried to fish through the noise for them. 

Why did we work so hard on a marginal experiment? For  two 
reasons: First, even very gross effects can escape attention until they are 
deliberately sought: witness the story of the large violations of parity 
conservation in weak decays. Second, we felt that the concreteness of a 
real though marginal experiment would draw more attention to the issue of 
possible quantum correlations in everyday life than the mere theoretical 
proposal, even if nothing amazing was discovered by the experiment. 

Our experiment has other weaknesses. 
If S sees the cube in a definite way, that probably means that he has 

enquired of some partly coherent state which way it is, and has so applied 
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a test, even though the experimenter has not requested him to do so. It is 
desired that the subject drift "mechanically" during displays and be 
"tested" only when explicitly requested to record a mode of seeing the 
cube. If the technique is slow, it will be difficult for S to avoid the 
introduction of S's own ad hoc tests. This indicates that the displays 
should be somehow too fast to "'think about," yet slow enough, of course, 
to see. I am writing here as if S were at least two collaborating mental 
entities, an elemental seer too simple to fail to have interesting phase 
relationships (hopefully!), and a thinker, the agent of the memory, which 
applies reality-defining tests to the output of the seer. The thinker and the 
external experimenter are both applying tests to the seer, and the experi- 
menter is trying to apply his tests fast enough so that their effect will not 
be swamped by the noise engendered by the tests introduced by the 
ordinary thinker. There is the extra difficulty that the experimenter's ,tests 
are transmitted to the seer by the very thinker the experimenter is trying to 
circumvent, but the success of ordinary hypnosis indicates that verbal 
external direction of the thinker is not impossible. In brief, it is desirable to 
pick up S's response rapidly and without unduly bothering S with busy 
work. We have S playing with a joystick, doing complicated things with 
moving points and circles. Perhaps the experiment could be improved by 
visual-perception experts, equipped to record eyeball positions. 

Professor Richard Warren of our Psychology Department anticipated 
another weakness. He expected that S would usually prefer one of the two 
interpretations for quite ordinary reasons. Thus, if one interpretation 
would have the top face exposed while the other would have the bottom 
face exposed, the first would be preferred because we more often look 
down upon cubes than up. This is of course a weakness from the 
standpoint of our program, because it has each test coming out in a way 
independent of the preceding state, and all probabilities close to 0 and 1, 
unlike illustrations where an acceptor significantly fails to commute with a 
state matrix. And indeed a subject did tend to respond uniformly to each 
given figure, though not entirely so. I could usually, while watching behind 
S, anticipate the response, and I fear became somewhat annoyed with S's 
for being so simply predictable! 

If one looks at a cube for a while, its three-dimensional interpretation 
will usually reverse spontaneously, a generally well-known phenomenon. 
This fact seems to deny the too-uniform response trouble we have had, but 
our measurement addresses mainly the first response, so there is no 
contradiction. The near balance between the two interpretations seemingly 
implied by reversal had made us hopeful that we would be studying 
something sensitive; if so our technique has not developed that sensitivity. 
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15.3 Ladder to Consciousness? The experimental discovery of some 
mental quantum interference would be directly interesting. It would begin 
a quantum-amplitude structure behind everyday probabilities, connecting 
quantum ontology more directly to common experience. Experiment with 
an internal observer yet with interference might be feasible in empirical 
domains where an observer is not complex. 

A mathematical description of psychological mechanics behind ontol- 
ogy could teach us new things about reality, perhaps leading to alternatives 
to space-time: The problem of consistency of perceptions of Berkeley and 
Borges should be regarded as open to study within the prereal framework 
of quantum theory. Darwinian evolution partly settles this: it is useful to 
the organism to apprehend perceptions only insofar as they are in fact 
consistent; yet this language is somewhat circular, "usefulness" presuppos- 
ing purpose and time whereas the problem is to generate purpose and time 
(and so space). But Darwinian argument has also suggested association 
between consciousness, nonswitching mechanism, and quantum logic, 
which may be wrong, so it is not altogether empty. 

If this association between consciousness as prime control and quan- 
tum interference is right, then a possible ladder to consciottsness exists. 
One starts anywhere in psychology with a program to seek quantum 
interference--I have suggested visual perception as an example. The 
experiments then reveal some details of the state space. Other phenomena 
are allowed to leak in, and the state space description grows. One learns 
where the interference effects are strongest. This points to the center of 
control, and hopefully displays its mode of operation. 

The ladder to consciousness and a ladder to the mechanism for 
generation of ontology may even be one and the same. 

16. UNIVERSALITY; QUANTUM MATHEMATICS 

How interrelated are the various disciplines? Especially, how immune 
is mathematics from extramathematical invention? Quantum logic at once 
reveals tighter interrelationships yet formalizes new lack of relationships. 

16.1 Lack. In order not to worry about the smallness of h making 
quantum effects small, it helps to lose the notion that all things tive in one 
great Hilbert-space universe, and that any experiment belongs to a techni- 
cal test over this one Hilbert universe. Bohr's complementarity, especially 
in contrast to the idea of superselection rule, reveals a plurality of incom- 
patible Hilbert spaces in ordinary quantum mechanics within physics. 
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Thermodynamic variables and the classical jelly-raster construction pro- 
vide further precedents. For me, the least compelling argument is that the 
burden is on the other side, that an empirical situation need not be 
considered so specially until the details show that to be so. 

So maybe to quantize a non-standard-physics field with equanimity, 
you first argue that the field is entirely cut off from standard quantum 
physics! So much for lack. 

16.2 Interrelationships. You can apply quantum logic to the data 
analysis of any subject where the facts factor into states and tests; all 
domains have at least this in common. 

If the observer is overdelicate with the observed system so that only 
the system's own physical state seems to matter, the tests only discovering 
facts about the states without disturbing them, you will not find against 
classical ontology. Destructive tests that cut deeper may be overlooked 
because their significance may be incomprehensible in a classically onto- 
logical context. Thus the requirement that a state be easy to copy led us 
from economics to psychology. A study of purpose, goal, utility, morality, 
more formally of control, would be central to both psychology and 
economics: A deep approach to control could fuse these disciplines. 

Economics could be many-body psychology, but there could also be 
distinct quantum mechanisms (Section 6.2) cutting across both. Some 
quantizations might be slavishly discovered by using MF on real experi- 
ments, others on the basis of thought experiments or guesses that lead to 
successful predictions. I am indeed jumping the gun somewhat with the 
claim that Freudian notions provide a bias for quantum psychology and 
with the argument from development of depth of control through 
Darwinian evolution. 

There are goals in every field of study, not just economics and 
psychology. In this sense, any abstract science of goals is primitive to every 
discipline. Perhaps there is an as yet nonexistent science of goals to be 
extracted by means of quantum logic from empirical psychology and 
economics, goals being commonly understood as the essence of these 
subjects. 

16.3 Mathematics. Of all fields, the one most claimed aloof is 
mathematics. Even if most new mathematics arises from applications, the 
axiomatic distillates do seem aloof. But this aloofness is lost when we seek 
to weigh the relative importance of different axiomatic systems. The 
axioms are only an interim wall between the vague but important goals 
and the sharp conclusions that sometimes flow from the axioms. 



~ r ' s  Cat 583 

What would it be like without the wall? That would be saying that you 
cannot talk sensibly about relative importance of anything, not even of 
mathematical axiomatic systems, except in reference to a consciousness or 
control which selects for importance. There is competition, a budget of 
sorts, so the issue is at once mathematical and economical! Maybe this can 
be done all internal to mathematics. It would involve different incompati- 
ble mathematical realities. This phrasing cheapens quantum ontology to 
suggest the ordinary situation in mathematics, of plural axiomatic topics. 
Isolating the invariant reality of a topic from its provincial axiomatic form 
and interrelating distinctly axiomatized topics is, say, the "theory of 
categories". 

The metamathematical commonplace, that any transmitted mathe- 
matical treatment is a finite row of symbols, may be compared to the 
sequential digital storage of a computer memory, perhaps also of a live 
memory, to draw a parallel between mathematics and psychology. Con- 
trast with the picture of infinite sets finitely discussed, the "Skolem 
paradox." Mathematics is the psychological output of the world, drawn in 
most distinct form. The distinctness is that of symbols. It is shared by the 
bin disjunction of quantum logic, where such distinctness coexists with 
unknowability principles. 

Perhaps the mind is already so well represented in mathematics and 
the study of mathematics is already so well developed in category theory 
and metamathematics that there is already there a structure of quantum 
psychology, hidden because the state-test experience of a Darwinian mind 
is not apprehended there. If so, then the smart way to build a machine that 
thinks may be through understanding where to splice state-test empiricism 
with category theory. The stupid way is to cheat by looking at real 
psychological experiments to see where quantum correlations appear be- 
fore they are understood. 

How can one study category theory as if it were a living mind, by 
confronting states with tests to get concrete statistical data, for input into a 
quantum-logic reduction? One cannot. How can a student produce a lab 
report without doing an experiment? By cheating: There is a way! If we 
can calculate what probabilities we ought to get, we can then cheat and 
invent spurious data. Identifying states tests and probabilities, relevant 
somehow to purpose, may be enough of a purpose analysis of a theoretical 
realm even without made-up random data. The impossibility of random 
output of a mathematically controlled analysis, even one about probability 
randomness and quantum ontology, may be as irrelevant to a mathemati- 
cal study of purpose as the finitary quality of language is irrelevant-- 
hopefully--to the mathematics of infinity. 
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16.4 Rotation. "Looking at an issue from a different angle" might 
have a literal quantum-logical interpretation. Inventive intelligence could 
be a basis-rotating capacity. Fuzziness of the old-basis thought is com- 
pensated by storing results in memory. This is separating a theorem from 
its proof. 

Marx brothers' humor:  the activation of basis rotation with paradoxi- 
cally little reward. The other Marxist, Talmudic, lawyers' dialectics: induc- 
ing basis rotations by trying to oscillate imperfectly between "yes" and 
"no." 

16.5 Recapitulation: a Thinking Machine. By "thinking machine" I 
mean a device that thinks like a person, not just a device that answers 
questions. If the nucleus of human thought is a quantum control unit, then 
a stored-program computer is not such a device. 

Indeed, you have not built a quantum-thinking machine unless it gives 
different answers to the same question: A consistent computer does not 
think. The inconsistency is not to be just put in by a meaninglessly 
randomizing device; noise in itself is bad and even noise generated by 
quantum operation is not in itself useful. The noise that accompanies 
quantum operation, however, diagnoses that depth of probing is distorting 
the thing probed. Depth is good, distortion bad; the best compromise 
therefore allows distortion for the sake of depth. The distortion is ontotogi- 
cally shattering, so it shows up in a reality as randomness. 

The argument that the stored-program computer is not a quantum 
thinker is most convincing when the computer is totally without randomi- 
zation. If, ignoring this, the argument is to be refuted by using randomiza- 
tion, that must reach to answers: Monte Carlo programming to get 
essentially definite answers will not do. Quantum strength of thinking 
reaches to unpredictability of the answers. Since the answers reach us, the 
ontological branching of a thinking machine does involve our own reality. 

A thinking machine should not be too silly about giving different 
answers to the same question. It should be sure that 1 + 1 = 2  . . . .  except: It 
should have a chance to decide, on its own initiative, to study the purposes 
revealed by the definitions that lead up to 1 + 1 = 2, and then by question- 
ing the purposes it should perhaps say that, if the field has characteristic 2 
then 1 + 1--0, also that then only 0 and 1 need be defined making "2" 
superfluous, hence making 1 + 1 = 2  ungrammatical, hence intolerable. 
Since any subject goes back to purposes the deep answers to even apparen- 
tly straightforward questions may strike back to shifting sands. One also 
wishes to operate at a shallow level, to see the definite consequences of 
questionable assumptions: a stored-program competence is also useful. 
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So reliable switches are only auxiliary tools, the reliability being good, 
though diagnostic of a lack of depth of interaction. Switching, reflex units 
in neural organization are useful peripheral apparatus. 

Depth of interaction rather than a classically ontological world image 
should have been primary in Darwinian evolution. All living forms possess 
sophisticated control mechanisms, even unicellular organisms, and most of 
the functional chemistry of multicellular organisms is organized within 
single cells. Just as the digestion by vacuoles gullet and enzymes is 
developed in the single cell and only slightly adapted in multicellular 
forms, so nervous organization is likely an extension of the apparatus of 
control in unicellular forms. 

Such organization is necessarily intracellular for unicellular forms. 
Once such intracellular control is primitively established, it will be 
elaborated and modified, but the control itself is not likely to be replaced 
by a new mode of control; mutations make revolutions only through large 
losses. So it is more plausible that major neural function resides within 
cells than that cells are simple switching elements. 

This has been reworked here because, since it is hard to understand 
the quantum-logical aspect of a switching system, it is important, if 
black-box quantum psychology is not to be ruled out a priori by brain 
structure, to see how to question the idea that the brain is a switching 
system. 

As soon as one gets out of a cell, one is likely in the peripheral area, 
and the control center does best if its peripheral devices are reliable 
switches. So exchanges between cells should, like a telephone system, use 
good switches. Examining the pulses exchanged might not be getting closer 
to studying brain function than examining telephone conversations. The 
core of control may escape. Quantum logic may tell more about control, 
even if the wall between state and test is moved outside the body, than 
nerve studies without quantum logic. Whole-organism psychological ex- 
periments somehow seem first, even if eventually quantum logic does get 
applied to a cell or ganglion as black box. 

The motive for addressing the cell comes from doubt about where a 
new quantum ontology can fit. Yet the ordinary world is not classically 
causal! We fabricate machines to transmit our purpose faithfully, and 
work at this; it is not automatic. The engineering science that has grown 
up around these machines strives towards the faithfully reproducible. The 
culminating Laplacian world view of absolute classical ontology is a 
Freudian rationalization of this line of endeavor. 

In fact, quantum wave-packet spreading is largely with us. Deciding 
where to go on the basis of a real Stern-Gerlach experiment demonstrates 
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this. Thus, "up" sends us !hrough one door, "down" sends us through 
another, and the whole story sends the mean coordinate of our wave 
function for our center of mass through or into some wal l - -a  classical 
limit of little value. This already broad shattering of ontology inherited 
from atomic physics is so much with us that there is little Laplacian 
anticipation of a definite story of events in the future. A control 
mechanism may exist in the vacuum of definition together with its quantum 
ontology; there is no existing classical definiteness to be lost. 

The definiteness of events in sequence is, of course, a definiteness of 
memory, of the past. The definiteness of memory is usually also confirm- 
able in the "objective world" because nonconfirmable memories are of no 
Darwinian adaptive value. 

Can we build something with its own quantum control center to live 
in its own branching ontology, in a way that the consequences of this 
branching will somehow not escape us? But we generate new branching in 
atomic physics experiments, and we know what that does to us: We branch 
in correlation, but see that only in the stochastic look that a series of such 
experiments leaves in our memory (Lubkin, 1979). So the only "strange" 
aspect, but the diagnostic one, of a thinking machine will be that its 
behavior will not be entirely predictable. Even this will not seem odd 
because in this it will be like a cat! A live cat. 

The diagnosis of quantum control in such a machine could be by a 
quantum fit of the probabilities through, say, MF. For  diagnosis of 
quantum control in a black box, it is necessary for it to show nontrivial 
probabilities in its responses to multiple-choice b-bin "questions," which 
also subsequently reveal underlying quantum coherence upon analysis. 
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APPENDIX A: POSITIVITY 

As texts on matrices usually treat positivity only for real symmetric 
matrices, the reader may find the elementary treatment here useful. Positiv- 
ity in the strong sense, all eigenvalues > O, is treated first, then nonnegativ- 
ity separately. 

Theorem 8." Positivity. The following conditions are equivalent, for 
an n • n Hermitian 6 matrix M: 

(1) The eigenvalues are all > 0. 
(2) x:/=0 implies (xlMIx)>O. 
(3) The k X k Hermitian matrix obtained by erasing the last 

n -  k rows and columns of M has positive determinant, for each 
k = 0  . . . . .  n - 1 .  

(4) The n determinants of the matrices obtained by succes- 
sively striking out one row and corresponding column of M one at 
a time in some arbitrarily chosen order, are all positive. 

(5) All determinants of square matrices obtained by deleting 
rows and corresponding columns of M are positive. 

(6) 3 nonsingular S such that M =  SiS .  

(6') 3 positive Hermitian M�89 such that M =  (M�89 2. 
(7) 3 basis (x I . . . . .  xn) such that the n 2 matrix elements M O. of 

M are given by M O. = (xi[xj~. 

Proof. Condition (2) implies (1): For each eigenvalue 2~, choose x a 
normalized eigenvector, M x = A x  and ( x [ x ) =  1. Then ( x l M I x ) = L  and 
from 2, ( x [ M [ x )  > 0. Hence ~ > 0. 

Condition (1) implies (2): Because M is Hermitian, there is an ortho- 
normal basis (x 1 . . . . .  xn) of eigenvectors of M, M x  i =~.x i. If x =Y, laixi, then 
( x I g l x )  -- Y, ila;I=~ > 0. 

Condition (1) implies (6), (6'): Let Sx~=~xz ,  where h,~ is the positive 
1 

square root, and extend S linearly, i.e., if x=Y~ia~x ~, then Sx=~,iaiA,3x ~. 
Then S* = S, and M = S 2 = S iS. 

Condition (6) or (6') implies (2): I.e., S nonsingular and x : # 0  imply 
that (xla*Slx)>0. Indeed (xlS*Slx)=(Sxlax)>0, since Sx is a non- 
zero vector. 

6Condition (2) for arbitrary square M itself implies that M is Hermitian, but a matrix with n 
nonorthogonal eigenvectors fulfilling condition (1) is not Hermitian. 



Hence (1), (2), (6), (6') are equivalent; call (1), (2), or (6)positivity. It 
remains to prove that (3), (4), (5), and (7) are equivalent to positivity. 

Positivity implies (5): d e t M  is the product of M's  eigenvalues, hence 
>0;  this is the null deletion case of (5). To prove positivity of the 
determinant of M '  obtained from M by deleting the ith rows and columns 
of M for all iE  Set, observe that the ( x lMIx )  > 0  computed using nonzero 
x whose components x i for i ~ Set vanish, are one-one with equal values 
(x '[M'lx ')  where ' signifies deletion of vector and matrix components 
indexed in Set. But the x' so obtained are general nonzero vectors in the 
vector space after deletion of components, whence (x ' [M'[x ' )>0 satisfies 
form (2) of positivity for M' .  Hence M '  is a positive matrix in the 
Set-deleted space. Hence de tM '  > 0. 

Condition (5) obviously implies (3) and (4), 
Condition (4) reduces to (3) by renumbering. 
Condition (3) implies (1): It is given that 

roll>O, 
mll 
m21 

mz2 >0,  
m22 

mll m12 /'hi3 
m21 m22 m23 
m31 m32 m33 

> 0  

etc.; including de tM >0.  By adding a multiple (by factor --m21/mll ) of 
the first row of M to the second row of M, a new matrix is obtained with 
element 0 in place 21. Such a "row operation" changes none of the n given 
determinants. Now add the complex conjugate amount (factor -ml2 / rn l l )  
of the first column to the second column, to restore hermiticity and make 
place 12 zero. If M is considered a product IMI  with unit matrices on the 
left and right, the row operation may instead be regarded as being 
performed on the left factor I, the column operation on the right factor I. 
If the left 1 is changed thereby to A, then the right 1 is changed to A t. 
Thus, the process may be written M ~ A M A  t. That (AMAt) t=AMA t 
follows from the identity (XY) t =  y t x t ;  the notation AMA t shows con- 
cisely that the row and column operations together preserve hermiticity. 

Next, write A - - 1 +  B, and consider M ~ ( I +  ~B)M(I+ ~B) t, where 
varies from 0 to 1. The effect is still a row and a column operation leaving 
the n determinants unchanged, but now M varies continuously to AMA t, 
passing through Hermitian matrices in such a way that the eigenvalues, 
real because ( I+~B)M(I+~B)  t is Hermitian, vary continuously. 

similarly annul the elements in the 31, 41 , . . . ,n l  places (and  in the 
13 . . . . .  1 n places). 

By performing row operations in which a continuous multiple of row 2 
is added to later rows together with the conjugate column operations, all 
elements in places k2 (and 2k) are also rendered 0 for k > 2. This process 
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can be continued to produce a diagonal matrix. Each newly isolated 
diagonal element is proved positive by observing that the next positive 
determinant is the product of the previously isolated positive diagonal 
elements and the newly isolated diagonal element. Therefore the process 
concludes by producing a positive diagonal matrix. 

To see that the original matrix M is positive, observe that since the 
real eigenvalues of M had to vary continuously through real values (the 
eigenvalues of the varying matrix) to final positive values, any originally 
negative value would have had to cross through 0. This would have 
rendered the n • n determinant zero; instead the original nonzero value of 
this determinant does not vary. QED: (3) implies positivity. 

A corollary of this portion is that, if the n nested determinants are 
given only nonzero, then the sign changes starting from a plus sign, 
proceeding to the 1 • 1 determinant, then the 2 • 2 determinant, etc., are in 
one-one correspondence with the signs of the elements of the final 
diagonal matrix. The number of such reversals is the number of negative 
eigenvalues of the original matrix. 

Positivity implies (7): If the original basis is denoted (e I . . . . .  en), 
then M o. =(eilMlej). From version (6') of positivity, M(/ = 

(e, IM~M~Ig)=(M~e, I M ~ 5 . ) . ' ' ' '  Thus t h e  xi-~M�89 i fulfill (7). They are 
linearly independent because the e i are, and M ~ is nonsingular. 

1 

Condition (7) implies positivity: Given a basis (x 1 . . . . .  xn), to find that 
the (xilxj) constitute a positive matrix, let S be the nonsingular linear 
transformation such that x; = Se~, where (e I . . . . .  en) is the original orthonor- 
real basis. Then (x , l~9)=(ae i lS~)=(e i lS*Sl~) .  These are the matrix 
elements of positive matrix S iS. [] 

Nonnegativify. Condition (7) is weakened to nonnegativity by replac- 
ing "basis" by "'list of n vectors.'" 

The nonnegative combination ~pigi of nonnegative Hermitian 
matrices Mi,Pi > 0 is nonnegative (e.g., via Part 2 of Theorem 8); the 
nonnegative Hermitian matrices form a convex cone of one nappe dropped 
from the 0 matrix. The positive Hermitian matrices of course form the 
interior. 

It does not follow from M > 0  and M:/=0 that M > 0 ,  e.g., (1 ~. 
Nevertheless we say A > B  when ,4 - B  > 0;A/> B when A - B  ~ 0. > and 

are strong, weak real vector-space orderings, even though > is not " >  
o r  ~ ". 

A matrix may have all eigenvalues + ,  or 0, or - ,  or + 0, or + - ,  or 
-0, or + - 0 ,  already seven specific cases; "nonnegative" is less specific 
and lumps cases + ,  0, and + 0. 

The n nested determinantal conditions for positivity might suggest 
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that any n exactly similar weak inequalities be equivalent to nonnegativity, 
but no: ~ - 9  has nested determinants 0,0 working down from the upper 
left. One can get correct conditions by applying positivity to M +  el for 
e > 0, e---~0. But the following, stimulated by a conversation with E. P. 
Wigner, is easier. 

Let d e t ( x I -  M )  = p ( x )  - n -Y.k=oPkX be the characteristic polynomial  
of a Hermitian matrix M. 

Theorem 9: Nonnegativity of - M .  M < 0 is equivalent to Pk >1 0, 
k=O,.. . ,n.  

Proof. Given M <  0, to showpk >/O.p(x) is the product of factors x -~,,  
where h is an eigenvalue of M, hence ~ < 0. Thus, x - ~ = x + [~[; since only 
nonnegative numbers appear in these linear factors, the Pk obtained f rom 
multiplying them out are indeed nonnegative. 

To show the converse, assume Pk/> 0, and note that Pn = 1, always. 
~ n  _ X k Then if x > 0, , ,  k ~ 0Pk > 0. Hence there is no positive root. [] 

The coefficient pe can be seen to be the sum of all k-clown diagonal 
minors of matrix - M ,  as follows: In expanding d e t ( x I - M ) ,  x occurs 
precisely k times, when in the several products of n matrix elements, 
precisely k diagonal spots are selected to give the x factor, hence the rest 
of each such product  is selected from the matrix - M with the k rows and 
columns through those selected spots deleted precisely in the manner  of a 
minor determinant. Since M < 0 is equivalent to - M  ~ 0, we can refer 
directly to the nonnegative matrix - M, to get the following theorem. 

Theorem 10. Sums of Minors. A Hermitian matrix is nonnegative if 
and only if the n sums of its k-down diagonal minors, k = 0 . . . . .  
n -  1, are nonnegative. 

More specifically, the product  of the x + IXl for M ~< 0 has 1, 
factors x if 1, is the multiplicity of 0, and a product of n -  ~, factors 
x + 1~1 with Ihl > 0, which multiplies out to a polynomial of degree 
n - p  with all coefficients positive. Hence, the terms of low degree 
of p(x) are zero, but then terms of degree i, or more are positive: 
Pk > 0 for k >1 p, Pk = 0 for k <p.  In words, there are no gaps once 
the positive coefficients start; in the minors language, for a non- 
negative matrix, the low-order sums of diagonal minors are posi- 
tive, the high-order ones are zero, with no intermixing of zeros 
among the positives. 

Corollary. A real polynomial  p with nonnegative coefficients with 
gaps must have nonreal complex roots. 
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Proof. Otherwise its roots would all be < 0. The diagonal matrix of 
these roots repeated according to their multiplicity would be a Hermitian 
M <  0 whose characteristic polynomial would be p, contradicting the 
no-gap result above. [] 

APPENDIX B: EXTREMITY OF ONE-DIMENSIONAL 
P R O J E C T I O N S  AMONG T H E  STATES 

Lemma 2. The space of two-sided nonnegative variation (MB) of 
one-dimensional projection P is spanned by P itself. 

Proof. Suppose P + X X  nonnegative for real h with [~,[ sufficiently 
small. Choose a basis so that Pll  = 1, other Pjk = 0. The diagonal dements  
(P+XX)k k with k/> 2 are simply hXkk. Since diagonal elements of a 
nonnegative matrix are nonnegative, LYkk/> 0 whether 2~ is positive or 
negative, hence Xkk = 0, k/> 2. To see that also Xjk = 0 for j v~k, note the 
nonnegativity of the 2 • 2 minor determinant, (P  + hX)~(P + hX)k k ~- (P  + 
XX)j~(P+MC)~j/> 0. This boils down to -x21Xj l 2 0, hence such Xjk =0.  
This leaves Xll as the only allowed two-sided variation, proportional 
indeed to P. [] 

Theorem 11: Extreme States. The extreme points in the compact 
convex body of nonnegative matrices of trace l are the one-dimen- 
sional projections. 

Proof That the one-Dimensional Projections Are Extreme. Even the 
one-dimensional variation of Lemma 2 is forbidden by fixity of the trace. 

[] 

Proof Less Computational, of Theorem 11. A nonnegative matrix of 
trace 1 not a one-dimensional projection can be diagonalized to display it 
as a mixture of one-dimensional projections. Were some one-dimensional 
projection Ix)(xl not extreme, then invariance of the body B of nonnega- 
five trace- 1 matrices to unitary transformation A--~ UA U -  i would show 
that any one-dimensional projection [Ux)(Ux], U arbitrary, is also not 
extreme, leaving no extreme point. But the nonempty compact convex 
body B is the convex completion of its set of extreme points, so there are 
some. [] 

Proof. , Less Computational, of Lemma 2. Let d be the dimension of 
the space X(P)  of two-sided variation of one-dimensional projection P. 
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The restriction that the variation not alter the trace cuts the dimension to 
d - 1 .  Extremity of P in the trace-1 positiyes, Theorem 11 shows this 
dimension, however, to be 0. Thus d =  1. Since one dimension is already 
provided by X = XP, no other variation is possible. [] 

A P P E N D I X  C: UNITARY INVARIANCE AND T H E  
NONNEGATIVE CONE 

It was argued in Section 11 that a sufficient number of probability 
data will freeze an n • n matrix solution up to unitary or antiunitary 
conjugation, M ~  UMU-1 or ( U M U -  i),, i.e., that if a solution containing 
enough independently placed repertories (at most 2n + 1, probably only 
n +  1) exists, all other solutions are conjugate, in the sense given. The 
number of real parameters effective in changing the matrices without 
changing the physics of state-bin probabilities, is dim SU(n) = n 2 - 1. Aside 
from dot-product conditions in DF 2 which admit the larger group of 

1 (n 2_ 1)(n2_2), the only condi- effective action O(n 2 -  1) of dimension 
tions on the matrices are nonnegativity. It follows that the subgroup of 
O(n 2-  1) that preserves the nonnegative cone consists precisely of those 
particular orthogonal transformations given by U. U -  l or (U. U -  1). con- 
jugation. 

This can be seen more directly. Let us speak briefly of the O(n 2 -  1) 
actions as "orthogonal transformations," the unitary or antiunitary trans- 
formations, as "conjugations." 

To show that any orthogonal transformation that leaves the nonnega- 
tive cone invariant is a conjugation: The general orthogonal transforma- 
tion is one-to-one. In being real-linear, it preserves convex combinations. 
Therefore the extreme points of a convex body are mapped one-to-one 
onto those of the orthogonally transformed image. If that image is to 
coincide with the original body, the mapping permutes the extreme points. 

Although the condition that normegative matrices map into nonnega- 
tive matrices allows the image to be a subset of the original whole cone, it 
is easy to see that this cannot in fact be a proper subset: The O(n 2 -  1) in 
question acts in the sheet of trace-1 matrices; the nonnegative body in 
question may be taken as B, the set of nonnegative matrices of trace 1, 
compact, and of finite (n 2 -  1) volume. Since orthogonals preserve volume, 
the image subset must be a convex subset of no less volume, and so must 
be all of B. 

The extreme points of B are the one-dimensional projections Ix)(xl, x 
running over the unit vectors in complex n-dimensional Hilbert space, the 
Ix)(xl in one-to-one correspondence with the complex rays in Hilbert 
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space. Furthermore, I x > < x l ' [ x ' > < x ' l  = T r  Ix><xlx'><x'l = I<x lx '> l  2 is, be- 
ing a dot product, preserved by the orthogonal transformation. Therefore, 
the transformation induces a transformation of unit vectors in Hilbert 
space which preserves I<xlx'>l. That such a transformation is necessarily 
of form [x>--~Ulx) or ix)-->(U[x>)*, with a common unitary U for all x 
in Hilbert space, is the same well-known theorem of Wigner that in- 
troduced the conjugations in Section 11. 

When x ~ U x  or (Ux)*, I x ) ( x l ~ U l x ) ( x l U t = U [ x ) ( x l U  -1 or 
( U I x ) ( x  I U - l )  *. There are enough one-dimensional projections [x)(x] to 
form a vector-space basis for the real n2-dimensional space of Hermitian 
matrices, on which the orthogonals act real-linearly. Therefore, the exten- 
sion of U.U -I or ( U . U - i )  * from the one-dimensional projections is 
unique. Since M--~UMU -1 or ( U M U - I )  * is such an extension, it is the 
only one. 

It is nonnegativity of the physical probabilities, the invariance of Tr  
PA = P.A owing to these dot products being the physical data, and the real 
linearity of MF, which limit the transformation theory to conjugations if 
P,A run over sufficiently many one-dimensional projections, according to 
the present proof; not the further evident requirement that the probabili- 
ties add to 1 or complex linearity. Of course the norm structure referred to 
as the base of all this is that of complex Hilbert space. 

APPENDIX D: T H E  SPINDLE, N >/2 

The spindle, the set of A > 0 with I -  A also /> 0, depicts the 2-plexes. 
A lurid description was given in Section 13 for n = 2 .  The situation for 
general n is made more vivid here by describing the planar sections of the 
spindle, through the 0 - 1  axis. 

Lemma 3. Acuteness. If A , B  are positive, then A.B >0.  

Proof Replace A , B  by A ' =  UAU -1 and B ' =  UBU -l ,  U unitary, so 
that A ' =  diag (a I . . . . .  an) is diagonal. A.B = A ' . B '  and A ' . B ' =  Y i ai(B')ii is 
a sum of products of positive numbers. II 

Corollary. If two nonnegative vectors A , B  are trace-orthogonal, 
i.e., A.B = 0, then they both lie in the boundary of the positive 
cone, i.e., det A --0, det B--0 .  

Proof Draw the plane through O, A, and B. The nonnegative vectors 
in this plane form an intersection of two convex bodies, the plane and the 
nonnegative cone, and is therefore itself convex. It is also an intersection of 
two cones, hence a cone. Hence, it is a convex cone in the plane OAB. 



594 lall~ia 

Such a figure is obviously a sector between two bounding rays. The angle 
between the two bounding rays is at most a right angle; otherwise slightly 
interior rays at more than a right angle would violate Lemma 3. Hence 
angle A OB is less than a right angle, unless both A and B are on the 
bounding rays. [] 

Axial Planar Intersections. The spindle may be described as the inter- 
section of the nonnegative cone with the figure obtained by  adding the 

1 

constant vector I =  n~e o pointwise to the nonpositive cone (the second 
nappe of the cone of two nappes which extends the nonnegative cone). 

I 1 

Adding I =  n~e o is 0-translation through distance nL  
Pass a plane through O and I. The plane intersects the space orthogo- 

hal to e o in a line on which lie two unit vectors, m and - m .  The plane is 
the set (xeo+ym: x,y real), and e0.m=0; i.e., matrix m is traceless. (x,y) 

I 

are Cartesian coordinates in this plane. 0---(0,0), I = ( n ~ , 0 )  are extreme 
1 

points, so the segment ((x,0): 0 <x  ~<n~) lies in the spindle, the other (x,0) 
do not. This segment lies within the sector between two extreme rays of 
nonnegatives, the positive cone within the plane, of opening angle at most 
a right angle. When the second nappe extending this sector is 0-translated 

1 

by amount n~, and the intersection is taken, a parallelogram is produced: 
Figure 4. 

Let the angle from the 0-axis to the bounding positive-cone ray 
nearest m be O(m). It is determined from the eigenvalues of m: Indeed, the 
point (1,y) on the ray corresponds to the largest y for which eo+ym is 
positive. If the eigenvalues of m are ~ > . - .  > - / ~ ,  in decreasing order, 

1 I 

then those of eo+ym are n - ~ + y ~ > . . .  > n - ~ - y / ~ = 0 .  Hence, y =  
I 1 l 

t a n O ( m ) = n - ~ # - .  Similarly, t a n O ( - m ) = n - ~  -1. From m . m = l ,  the 
sum of squares of eigenvalues is 1; then Tr m = 0 shows that there are both 

I I 

I i 
I 

Fig. 4. Intersection of the spindle with a plane through the OI lin�9 a parallelogram with 
O(m) + 0 ( -  m) ,~ ~ / 2 .  
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positive and negative eigenvalues. 

tan0(m) + tan0(--  m) 
tan [ O(m) + 0( -- m) ] = 1 -- tan 0(m)tan 0( -- rn) 

1 1 

n - : / t - l + n - : ~ - l  
1 - n -  l / x -  l}k - I  

- n 2 _ _  
nA/x- 1 

The extreme points of the parallelogram are its four vertices. Of these, 
O and I are extreme points of the spindle. Internal points of the parallelo- 
gram are of course also internal to the spindle. In our planar section only 
the other two vertices, where the positive and translated-negative cone 
boundaries cross, might be extreme in the larger spindle. 

If one of these points is A, the other is I - A .  Extremity of A in the 
spindle is equivalent to sharpness Of the question ( A , 1 - A ) ,  equivalent to 
A.(1-A)=O by the trace lemma (MB and Lemma 1). Therefore, whether 
or not the vertices of the parallelogram other than 0,1 are extreme in the 
spindle depends on whether O(m)+ 0(-rn) is a right angle or an acute 
angle. A right angle corresponds to infinite tangent, n~# = 1, an acute angle 
to nX/L > 1. A is extreme if and only if the parallelogram is a rectangle. 

Because there are no extraneous 2-tests, an extreme A must be simply 
1 

a projection of dimension d. Tr  A = d, so A 0 = n - :d  is the x coordinate of 
1 

the vertex on the 0(m)-inclined ray. Since t an0(m)= n - : #  -1, the vertex 

is (n-�89 n-ld#-l). The point I - A  is (n-�89 
Orthogonality A.(I-A)=O yields only nA/~= 1 again, but the condition 

that these sum to I=(n�89 gives dfz-l=(n-d)A -I, or Xl~-l=(n-d)/d. 
Multiplying by X# = n - 1 yields ;k = [(n - d)/dn]�89 The matrix m is obtained 
from the projection A by removing the trace part and normalizing; thus 

there are only two distinct eigenvalues, [ ( n -  d)/dn]�89 d-fold, and - [ d / ( n  
1 

- d)n]: ,  (n - d)-fold. 
In other words, the intersection of the spindle with a plane through 

the three points O, I, and another extreme point A, is a rectangle which 
l 

when scaled up a factor n :  can be drawn as follows: Draw a circle of 
diameter n, and draw a diameter marked O at the left and I at the right. 
Erect a one-sided perpendicular to the diameter at distance d from the left. 
The intersection of this perpendicular with the circle marks "A," a third 
corner of the rectangle. The various cases d = 0 ,  1,2,3,4,5, for n--5,  are 
shown superposed on one circle in  Figure 5, although for any particular 
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Fig. 5. Shapes of the planar sections of the spindle illustrated for n= 5 and (d,n-d)=(1,4), 
(2,3), (3,2), (4, 1). Cases (0,5) and (5,0) degenerate to the segment OL 

plane through O, I, and an extreme point A (and so also the extreme point 
I - A ) ,  only one of these rectangles applies. 

Were these rectangles O(n 2 -  1)-rotated about the 0 - I  axis freely, and 
the convex body taken, call it the twirl, one would get for its planar 
intersection the convex polygon determined by all the corners (including 
O, I) in each plane, a decagon in the illustration. The twirl is the smallest 
convex axisymmetric figure that contains the spindle properly. The dispar- 
ity between the twirl and the spindle itself illustrates the lack of O(n 2 -  1)- 
invariance of the spindle, n/> 3. To mark this irrelevance, the six nonrec- 
tangle edges of the decagon are not drawn in Figure 5. 

The one-dimensional projections, the extreme rays of the nonnegative 

cone, have d= 1, so lie at the rather large angle 0 = cos-In-�89 from the 0 - I  
axis, while never being more than a right angle apart from each other. 

APPENDIX E: DIMENSIONS OF VARIOUS FIGURES 

Real 
Figure Dimension 

Complex 
Dimension 

n • n complex matrices 
n X n Hermitian matrices 

n • n nonnegative Hermitian matrices, the non- 
negative c o n e  

n X n unitary matrices 

U(n) 
SU(n), SU(n) rood its center =~ U(n)/U(I) 
all possible acceptors 

2n 2 
n 2 

n 2 

n 2 

n 2 -  1 

n 2 

/,/2 
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Figure 
Real 

Dimension 

states, or "density matrices," or the compact 
positive body B at trace l, or space of cone 
elements or rays of the positive cone 

n 2 -  1 

pure states, or Hilbert-space rays, or one-dimen- 
sional projections, or extreme points of non- 
negative cone, or homogeneous space with 
congruences U(n) and isotropy U(1)(9 U(n-  
l) 

Hflbert-space vectors 

2 n - 2  

2n 

sharp questions or 2-plexes (E, F)  of dimensions 
(d ,n-  d), or homogeneous space with con- 
gruences U(n) and isotropy U(d)(9 U(n- d), 
or d-dimensional extreme points of spindle 

general 2-plexes, or questions; the spindle 

sharp b-plexes (-41 . . . . .  Ab) , dim Ai= di, ~,dim n , 
or congruences U(n) with isotropy ~iU(di) 

repertories (a~. = 1 above) 
all b-plexes 
undersharp b-plexes 
O(N) 

O(n ~) 
O(n 2 -  1) 

boundary of the positive cone 
boundary of the compact nonnegative body B 

n 2 - -  d 2 - ( n  - d) 2 

--2d(n - d )  

n 2 

n 2 - x a ?  = X a, aj 
i§ 

=2 X a,4 
i<j 

n2--n 
n2(b- 1) 
n2(b- 1) 

k N ( N -  1) 

~n2(n  2 -  1) 

�89 2 - -  1)(n 2 "  2)  

n 2 - 1  
n 2 - 2  

intersection of the boundary of the positive cone 
with the boundary of the/ - t ransla ted negative 
c o n e  

n2-2 

logics in the n x n matrix format for s states and 
t tests with b 1 . . . . .  b t bins 

n2m-s+ l 

where 

m = s - - l +  ~, bj 
j - I  

classical logics with n • n diagonal matrices, s 
states and t tests as above 

n(m+ 1 ) - s  

m as above 
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Complex 
Dimension 

n - 1  
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APPENDIX F: DISCONNECTEDNESS OF T H E  
CONJUGATIONS IN RELATION TO DISCONNECTEDNESS 

OF O(n z) OR O(n 2-1) 

U(n) and therefore the U. U -1  conjugations, are connected 
(Chevalley, 1946); this is readily apprehended by changing U to I through 
successive one-parameter "rotations" preserving unitarity. The difference 
between two antiunitary conjugations is a unitary conjugation, and it is 
easily verified that the antiunitary, complex conjugation cannot be effected 
by a unitary conjugation; thus, the antiunitary conjugations form a distinct 
connected component. This well-known two-component structure of the 
conjugations appropriate to quantum mechanics in MF without superselec- 
tion rules is related to the two-component structure of the orthogonals, 
only when n ~ 2  or 3 rood 4: 

The real-vector-space basis of n 2 Hermitian matrices of Section 12 has 
l n ( n -  1), pure imaginary. Complex conjuga- �89 + 1) real matrices and 

tion, on this basis, therefore reverses the signs of precisely � 8 9  
matrices. The determinant of either the O(n 2) o r  O(rl 2 -  l )  real-linear 
operations which effect the corresponding transformation in either DF is 
therefore ( -  1) n(n- 1)/2. For  n = 2, 3, 4, 5, 6, 7 , . . . ,  this is, respectively, 
- I, - 1, 1, l, - l, - 1 . . . . .  a sign reversal every second step. 

The orthogonal groups also have two components, the orthogonals in 
the component of the identity element being characterized by determinant 
1, the other component, - 1 .  Thus, when ( - 1 )  n(n-1)/2~- 1, the antiunitary 
conjugations belong to the same connected component of the orthogonals 
as the unitary conjugations, for the other n, however, to the other compo- 
nent. Restriction of the orthogonals down to the conjugations only, pro- 
duces two connected components; these both being carved out of the full 
orthogonal component of identity only when ( -  l) n(~- 1)/2= 1. 
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